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Abstract

This paper proposescognitive developmental robotics (CDR) as a new principle for the design of humanoid robots. This
principle may provide ways of understanding human beings that go beyond the current level of explanation found in the natural
and social sciences. Furthermore, a methodological emphasis on humanoid robots in the design of artificial creatures holds
promise because they have many degrees of freedom and sense modalities and, thus, must face the challenges of scalability
that are often side-stepped in simpler domains. We examine the potential of this new principle as well as issues that are likely
to be important to CDR in the future. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Robot heroes and heroines in science fiction movies
and cartoons like Star Wars in US and Astor Boy in
Japan have attracted us so much which, as a result,
has motivated many robotic researchers. These robots,
unlike special purpose machines, are able to commu-
nicate with us and perform a variety of complex tasks
in the real world. What do the present day robots lack
that prevents them from realizing these abilities? We
advocate a need forcognitive developmental robotics
(CDR), which aims to understand the cognitive de-
velopmental processes that an intelligent robot would
require and how to realize them in a physical entity.
However, cognitive developmental robotics has just
started and its definition, design principle and method-
ology have not yet been established. In this paper, we
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examine the potential for CDR to further understand
both humans and machines. We hope this stimulates
many researchers — not simply in robotics but also in
other disciplines — to discuss and tackle this contro-
versial new paradigm.

The key aspect of CDR is its design principle. Ex-
isting approaches often explicitly implement a con-
trol structure in the robot’s ‘brain’ that was derived
from a designer’s understanding of the robot’s physics.
According to CDR, the structure should reflect the
robot’s own process of understanding through interac-
tions with the environment. Since both CDR and the
traditional approach may lead to similar results, CDR
may seem unnecessary if we evaluate it merely in
terms of task performance. However, we believe CDR
holds promise in the long term both in terms of pro-
ducing human-like behavior and because it can serve
as a testbed for cognitive theories. Furthermore, more
traditional approaches in AI and engineering tend to
break down in natural settings, where the robot’s body
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and environment are difficult to model and can change
unpredictably [21,22].

Brooks et al. [5] proposed the methodology for
alternative essences of intelligence as a humanoid
design principle which consists of parallel themes:
development, social interaction, embodiment and inte-
gration. Any of these themes seems essential for CDR
and we share very similar concepts. But in CDR, we
emphasize more fundamental issues of cognitive de-
velopment and propose a more constructive approach.

Cognition and development have been the key is-
sues for human intelligence, and recent progress in
these disciplines promoted a new area calleddevel-
opmental cognitive neuroscience (DCN) [19], which
emerged at the interface between two of the most fun-
damental questions that challenge mankind. The first
one concerns the relation between the mind and the
body, and especially between the physical substance
of the brain and the mental processes it supports (cog-
nitive neuroscience). The second concerns the origin
of the organized biological structure such as the highly
complex structure of the adult human brain (develop-
ment). Johnson [19] claimed that we can cast light on
these two questions by focusing on the relation be-
tween the postnatal development of the human brain
and the cognitive processes it supports.

The basic idea seems applicable to the approach of
CDR since it has to deal with cognitive processes dur-
ing the development of a robot’s brain. However, the
difference between CDR and DCN is that CDR is a
synthetic or constructive approach with the potential
to test its models by implementing them in humanoid
robots. The cycle of fault diagnosis and reimplemen-
tation may iterate many times in order to refine the
model [9]. The idea is that this process of refinement
might result in a useful model of human interaction.

Since brain science is primarily concerned with
structural details of human brains at the microscopic
level, it may not be well suited to provide a com-
prehensive model of human activity and how brains
support it. Sometimes, however, the social sciences
have attempted to understand human activities at
a purely macroscopic level — without concern for
the biological structure of individuals (for example,
humans are sometimes treated as black boxes). By
providing a means of scrutinizing and testing models
and finding alternatives, CDR can help bridge macro-
scopic and microscopic approaches. We expect that

through the process of designing and implementing
humanoid robots, a new way of understanding human
beings will develop that differs significantly from the
ways in which humans are understood in the natural
and social sciences. In addition, we believe that robots
that can synthesize symbols through social interaction
will have the best chance of one day approaching the
human capacity.

We already mentioned one side of the design princi-
ple of CDR: the design of a self-developing structure
inside the robot’s brain. But if we consider human be-
ings and other intelligent species, we find another side
to this story. Individuals cannot reach their full poten-
tial without nurturing relationships. Parents, teachers
and other adults adapt themselves to the needs of chil-
dren according to each child’s level of maturity and the
particular relationship they have developed with that
child [16]. So the other side of CDR’s design princi-
ple concerns environmental design: how to set up the
environment so that the robots embedded therein can
gradually adapt themselves to more complex tasks in
more dynamic situations. It may include instruction
from a human or robot. Fig. 1 shows a typical method
of designing the embedded structure and the environ-
ment.

The rest of this paper is organized as follows. First,
we review the view that embodiment is the least
requirement for cognitive development. Then, we
explain the design principles and the approaches of
CDR and finally, we discuss the future directions for
CDR.

Fig. 1. Interaction between embedded structure and environment.
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2. Physical embodiment and interactions

Owing in part to the influence of a series of papers
by Brooks (cf. [6,7]), artificial intelligence researchers
now consider physical embodiment to be necessary
for designing the structure of intelligent systems. A
physical body enables an agent to interact with its en-
vironment, which we may expect could lead to the
emergence of intelligent behavior and internal organi-
zation. Robotics researchers have never really disputed
the need to have a physical body because it is essential
to their research. Therefore, few have entered into a
critical dialogue concerning the relationship between
having a body and the emergence of intelligence. Here,
we review the significance of embodiment [4].

1. Perception and action are not separable but tightly
coupled.

2. Under resource-bounded conditions (memory, pro-
cessing power, controller, etc.), an agent is able to
learn a sensorimotor mapping from experience (in-
teractions with the environment).

3. As the complexity of its task or the environment
increases, the agent is able to adapt itself to these
changes by learning from the consequences of its
actions and adapting this knowledge to new situa-
tions.

No one seems to have any objection to (1)
and maybe (2). Pfeifer and Scheier [25] explained
“embodiment” in a variety of contexts in their book
with reference to Brooks’ definition [6]. However,
they seem to put more emphasis on physical cou-
pling than cognitive and physical developmental
processes. A typical example is passive dynamic
walking [23] by exploiting the system’s dynamics.
Here, we focus on cognitive development by adding
(2) and (3) since current technology does not re-
ally support the realization of a growing, changing
body.

3. Cognitive science, developmental psychology,
neuroscience and CDR

“DCN” [19] has emerged from cognitive science,
developmental psychology and neuroscience partly
owing to the recent progress of imaging technology in
brain science. A fundamental controversy in cognitive

science concerns the relative importance of nature
and nurture in determining the structure and behavior
of individuals. One extreme is that gene coding has
all kinds of information necessary for development.
The other extreme is that much of the information
involved in the formation of a human mind comes
from the environment. Both viewpoints are lacking.
Neither the nature nor the nurture side addresses how
new information emerges as Johnson pointed out. In
the last decade, new evidence has revealed that com-
plicated interactions between genes, developmental
processes and the environment leads to the emer-
gence of structural organization and behavior at many
levels [12]. CDR aims at a constructive approach to
realize a mechanism that can adapt to complicated
and dynamic changes in the environment based on its
capacity for interaction.

4. The design principle of CDR

From the standpoint of engineering, there are two
sides to the design principle of CDR: (1) how to de-
sign a robot brain whose embedded structure can learn
and develop; (2) how to create a social environment
capable of supporting the development of cognitive
processes.

4.1. Embedded structure

The embedded structure is a mechanism inside the
robot that efficiently supports its interaction with an
environment. The information obtained through inter-
action will differ qualitatively depending on the size
and organization of the robot’s functional modules,
which may range from the neural level to larger units
such as visual and motor subsystems. However, a com-
mon feature is that new information emerges inside
the robot. Reinforcement learning, which maps from
sensory information to actuator outputs, is a typical
example of a functional module.

4.2. Environmental design issues

The conventional robot design principle has put
much more emphasis on the embedded structure
than on environmental issues although the resulting
behaviors seriously depend on both. Environmental



188 M. Asada et al. / Robotics and Autonomous Systems 37 (2001) 185–193

design issues are essential for a robot with embedded
structure to learn and develop so that it can gradu-
ally adapt itself to more complicated environments.
Environmental design issues include all kinds of
factors that come from outside the robot. How other
active agents respond is key to the multi-agent
learning whether they be cooperative (e.g., rescue ac-
tivities in a disaster situation), competitive (a prey sur-
rounded by predators) or both (game situations such
as RoboCup [3]). Furthermore, other agents can be
coaches or teachers who can communicate with robots
by various means. From the viewpoint of facilitating
a robot’s development, learning from easy missions
[1], a learning schedule [4], or a gradual increase in
domain complexity [33] are typical approaches.

5. Approaches to CDR

Although a full scale implementation of a humanoid
robot built according to the principles of CDR cur-
rently stands beyond our reach, for the time being,
we can focus on essential issues in CDR keeping the
long-term goal in mind.

5.1. Development

Developmental issues have been examined within
the reinforcement learning paradigm because re-
inforcement learning enables complex behavior to
emerge through interaction without making many,
often untenable assumptions about the structure and
initial state of the internal mechanisms of cognition.
Yet, the flexibility of reinforcement learning has also
been its weakness; it results in a huge space of possi-
ble states and actions to explore. Only recently have
researchers begun to develop powerful nonlinear al-
gorithms that may be able to generalize across that
space efficiently.

5.1.1. Guidance by starting with easy tasks
Although human beings live long enough for the

various stages of cognitive development to unfold
gradually [26], robots have not yet attained that level
of reliability. Robot shaping [11] or learning from
easy missions (LEM) [1] provide typical and intuitive
methods for accelerating learning. In LEM, the es-
sential problem is how to define easy missions. One

solution is that the robot starts close to the goal state
in the state space and is gradually moved further from
the goal state as learning progresses. A distance mea-
sure is defined for the state space, and changes in the
Q-values are used to determine when to shift to more
difficult situations.

5.1.2. Environmental complexity control
Generally, the state space consists of multiple state

axes which leaves the question of how to define close-
ness to the goal state. This raises a more general issue:
how do we define the complexity of the environment
in terms of the developmental stage of the robot, and
how do we adjust the environment to meet the robot’s
changing developmental needs. While at first it may
seem that we are looking at the problem the wrong way
around — adapting the task to the robot rather than the
robot to the task — this is in fact what parents do nat-
urally in finding stimulating, age-appropriate ways of
interacting with their children. Asada et al. [4] defined
the complexity of the environment in terms of the re-
lationship between self-induced motor commands and
changes in sensory input.

1. Self-induced movements in a static environment.
The agent can directly correlate its motor signals
with changes in its sensory input (e.g., observing
hand movements, eye saccades to explore the en-
vironment).

2. Passive agents. Depending on the actions of an
agent or other agents, passive agents can be moving
or still. A ball is a typical example. As long as
passive agents are stationary, they can be treated as
part of the static environment. But when they are
in motion, there is no simple correlation between
an agent’s motor signals and sensory projections
from the passive agent.

3. Other active agents. Active agents do not have
a simple and straightforward relationship with
self-induced movements. In the early stage, they
may be treated as noise or disturbance because they
lack direct visual correlation with self-induced
motor commands. Later, they can be found from
more complicated and higher order correlations
(coordination, competition, etc.). The complexity
is drastically increased.

To enable a robot to behave intelligently, the com-
plexity of its internal representation should mirror that
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Fig. 2. Interaction between embedded structure and environment.

of the environment. The problem is how to map the
environment’s relevant structure. Uchibe et al. [32] in-
vented an algorithm to estimate which dimensions of
the state vector capture best the environment’s com-
plexity, and they applied it to improve the shooting be-
havior in a simplified defender versus shooter soccer
game [33]. Fig. 2 shows how the dimensionality of the
state vector grows with the environment’s complexity
— in this example, speed of the defender. As long as
the performance (success rate) exceeds the threshold,
we increase the complexity by increasing the speed.
If the success rate drops below the performance cri-
terion, the robot increases the dimensionality of the
state vector.

The environmental complexity control method re-
sulted in performance that slightly exceeded that of
learning with a full state vector and required only
one third the time. The fact that both robot and
environment are physical systems which limits the
time a robot has to reach task competency through
experimentation. Therefore,starting small [12] can
be important for bootstrapping learning mechanisms
by exposing the learner to the environment’s most
prominent features first. To some extent, we see this
in child language learning [24].

If a robot develops expectations concerning how
self-induced movements transform sensory projec-
tions, passive agents can be detected and modeled
from correlations among violated expectations [22].
In this way, the robot develops second-order expecta-
tions that may scaffold even more abstract learning in
a similar manner.

5.1.3. Learning schedules in multi-agent learning
In the last example [33], there was only one learner

and the behavior of the other agent (defender) was
controlled according to the skill level of the learner.
What kind of control is possible if both agents are
learners? In general, the simultaneous learning of ac-
tion policies from rewards in a multi-agent environ-
ment is difficult for a number of reasons: (1) Initially,
the agents’ learning focuses more on exploring the
state space than exploiting a policy; since exploration
depends on trying many unfruitful actions, the learn-
ing of both robots may diverge as they try to adapt to
each other’s largely random behavior. (2) Even when
each robot converges to its locally optimal policy, the
robots may easily miss finding policies that — taken
together — would be globally optimal.

We introduced a learning schedule [4] to address the
first problem which only one agent is allowed to learn.
The other agents have fixed policies until the learner’s
skill reaches a pre-specified level. Then the next agent
begins learning. We applied a cooperative task in the
context of RoboCup [3], namely passing and shooting.
The learning schedule successfully resulted in mutual
skill development which is generally difficult to reach
in the case of co-evolution [13].

5.2. Social interaction and communication

One way that CDR could contribute to our under-
standing of human beings is by providing models of
the cognitive and social processes underlying the de-
velopment of communication and to test those models
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using humanoid robots. The transition from nonverbal
to verbal communication is an active area of research
that CDR can address. There is a large gap between
primate and human species that needs to be filled in
(the missing link, cf. [10]). Since a survey of existing
views in linguistics, philosophy and sociology would
be too broad in scope for the purposes of this paper, we
focus instead on the issue of symbol emergence and
language acquisition from a viewpoint of engineering
design.

Over the last few decades, language researchers
seem to have reached a consensus that language is an
innate ability, and human babies are born with a kind
of “language faculty” or device [8]. Broca and Wer-
nicke areas seem to be part of such device but things
are not so simple. All language abilities cannot be re-
duced to the activities of those areas; in fact, many ar-
eas are related to language use implicitly. Also, given
the biological continuity from primate toHomo sapi-
ens, the claim that only human beings have a language
device seems difficult to accept. Without question, hu-
man brains come into the world especially equipped
for language. So the problems facing CDR are:

1. What kind of structure should be embedded inside
a robot’s brain? Whether the structure be explicitly
or implicitly specified, it should involve a new ex-
planation of how evolution and development bridge
the gap between nonverbal and verbal communica-
tion.

2. What analytical approaches should we use in CDR
(e.g., structural/anatomical, behavioral, evolution-
ary) and at what level of detail (e.g., gene and neu-
ron or auditory subsystem)? These are important
questions since it is impractical to try to reproduce
in robots millions of years of biological evolution
in all its detail.

Although current speech recognition and generation
technology is useful in some contexts, it is doubtful
that most AI systems based on this technology re-
ally understand (see Searle’s Chinese room argument
[30]) or can apply language in context as a tool for
communication [9]. This is a problem generally for
representations that cannot be related to sensorimotor
activity [15]. In their book, Elman et al. [12] showed
that simple grammars could be learned by artificial
neural networks. However, the inputs and outputs were
just symbols without any semantics. We intend to start

exploring how symbols emerge through social interac-
tion. Steels and Vogt [31] implemented adaptive lan-
guage games using robotic agents, and their approach
seems closer to ours, but they assumed a protocol for
robots to communicate. Since CDR aims to offer at
least a partial explanation of the transition from non-
verbal to verbal communication, we should focus on
how such a protocol could evolve or be learnt by hu-
manoid robots.

Schaal [29] surveyed imitation learning methods
and emphasized the importance of imitation as the
route to developing humanoid robots. He focuses on
efficient motor learning, the connection between ac-
tion and perception, and modular motor control in the
form of movement primitives. He pointed out open
problems such as learning perceptual representations
and movement primitives, movement recognition
through movement generation and understanding task
goals. Schaal then discusses the recent finding that
some neurons called “mirror neuron” were active
both when the monkey grasps or manipulates objects
and when it observes the experimenter making simi-
lar actions. Rizzolatti and Arbib [28] speculated that
the ability of imitate actions and to understand them
could have subserved the development of communi-
cation skills based on the fact that a similar system
includes the Broca area (known to be related to speech
generation) in human brain.

From the viewpoint of CDR as a humanoid robot
design principle, such a system should be included
because capabilities of both motion generation by im-
itation and motion understanding (e.g., by compari-
son to one’s own motion repertoire) seem necessary.
There seems to be two main kinds of imitation path-
ways: visual imitation (imitative learning by obser-
vation) andauditory imitation (imitative learning by
listening).

The existing methods (e.g. [14,17,20]) for the for-
mer often assume the global coordinate transformation
from a god’s eye viewpoint; however, CDR should fo-
cus on how such a transformation emerges through the
interactions between humanoid robots and/or humans
(e.g., in a manner similar to how a baby learns from
its parents). Asada et al. [2] proposed an imitation
system which recovers the other agent’s view without
any knowledge of a global coordinate transformation
but assuming that the other agent has the same body
structure (see Fig. 3). They expect to offer a route to
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Fig. 3. An imitation system.

motion generation understanding and “mind reading”
(the theory of mind [18,27]).

Since the mechanical structure of the human speech
generation system is quite complex and a sophisti-
cated integration of voluntary and involuntary muscle
controls is necessary to generate sounds [10], audi-
tory imitation has an essential problem: at which level
should the robot start to imitate? Imitation extends be-
yond mere mimicry to the ability to generate some-
thing new.

6. Conclusion

We have discussed a variety of issues concerning
CDR, most of which are far from resolution since
CDR has just started. Among them, two issues seem
essential for future arguments. The first one concerns
the definition of environmental complexity, the adjust-
ment of which can be expected to aid development.
However, the definition itself involves a contradiction
because before encountering a new environment, the
robot cannot define the complexity. In the method re-
viewed [33], the complexity corresponds to the dimen-
sion of the estimated state vector, which is obtained
in an off-line process. But it seems difficult to esti-
mate the full dimensionality of the state vector accu-
rately before learning. One alternative is to develop an
on-line method of state vector estimation.

The second issue is imitation in social interaction
between the learner and the teacher. There are several
levels of interactions, each of which has its own is-
sues. If the teacher knows everything about the learner
like a god, the teacher can guide the learning process
optimally. However, both learner and teacher must
realistically have only limited, perspective-dependent
knowledge. A further issue concerns the kinds of ex-
plicit or implicit means of communication available
(e.g., visual, auditory) and the extent to which the
teacher knows the learner’s state. Imitative learning
seems essential to developing cognitive processes for
both motion generation and language acquisition.

The ultimate aim of CDR is for both of us to know
ourselves by building robots and to build robots capa-
ble of functioning in society. Specifically, we want to
build robots that can relate to people and each other as
individuals by developing specific relationships just as
people do. We believe that in the process of building
robotics that can function in society, we cannot help
but learn about ourselves too.
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