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Abstract Applications requiring the natural use of the
human hand as a human–computer interface motivate research
on continuous hand gesture recognition. Gesture recogni-
tion depends on gesture segmentation to locate the starting
and end points of meaningful gestures while ignoring unin-
tentional movements. Unfortunately, gesture segmentation
remains a formidable challenge because of unconstrained
spatiotemporal variations in gestures and the coarticulation
and movement epenthesis of successive gestures. Further-
more, errors in hand image segmentation cause the esti-
mated hand motion trajectory to deviate from the actual one.
This research moves toward addressing these problems. Our
approach entails using gesture spotting to distinguish mean-
ingful gestures from unintentional movements. To avoid the
effects of variations in a gesture’s motion chain code (MCC),
we propose instead to use a novel set of features: the (a) ori-
entation and (b) length of an ellipse least-squares fitted to
motion-trajectory points and (c) the position of the hand. The
features are designed to support classification using condi-
tional random fields. To evaluate the performance of the sys-
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tem, 10 participants signed 10 gestures several times each,
providing a total of 75 instances per gesture. To train the sys-
tem, 50 instances of each gesture served as training data and
25 as testing data. For isolated gestures, the recognition rate
using the MCC as a feature vector was only 69.6 % but rose to
96.0 % using the proposed features, a 26.1 % improvement.
For continuous gestures, the recognition rate for the proposed
features was 88.9 %. These results show the efficacy of the
proposed method.

Keywords Human–computer interaction (HCI) · Gesture
recognition · Motion chain code (MCC) · Conditional
random fields (CRF)

1 Introduction

Gestures provide an attractive, user-friendly alternative to
using an interface device like a keyboard, mouse, and joy-
stick in human–computer interaction (HCI). Accordingly, the
basic aim of gesture recognition research is to build a system
that can identify and interpret specific human gestures auto-
matically and employ them to convey information (i.e., for
communicative use as in sign-language) or to control devices
(i.e., manipulative use as in controlling robots without any
physical contact).

One of the most important requirements for sign language
recognition is that natural gesturing be supported by the
recognition engine so that a user can interact with the sys-
tem without any restrictions. Since a sequence of gestures is
generally mixed with coarticulation and unintentional move-
ments, these non-gestural movements should be eliminated
from an input video before the identification of each ges-
ture in the sequence. Movement epenthesis is a non-gestural
movement between gestures, and gesture coarticulation is
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the modification of the beginning or end of a sign because
of the sign that preceded or suceeded it, respectively [1,2].
In more natural settings, the gestures of interest are embed-
ded in a continuous stream of motion, and their occurrence
must be detected. This is precisely the goal of gesture spot-
ting, namely, to locate the starting point and the endpoint
of a gesture pattern and to classify the gesture as belonging
to one of the predetermined gesture classes. Once the ges-
ture boundaries are known, a gesture in the sequence can
be conveniently extracted. However, the process of gesture
boundary detection is not trivial for the following reasons:

– Gesture boundaries vary from one signer to another.
– Gesture boundaries are sequence dependent; in particu-

lar, gesture segmentation is heavily influenced by higher-
level cognitive processes and by the context of each ges-
ture.

– It is impossible to enumerate all gestures. Traditional
computer vision approaches characterize a gesture as a
series of poses. Clearly, given the virtually infinite num-
ber of poses that the human body can assume, a generic
model-based approach to gesture segmentation is not
viable.

Generally, a gesture starts and ends with the hand at a stand-
still. That is, a signer generally starts making a sign from
a pause state and ends in a pause state even when gestur-
ing continuously [3]. Based on this observation, we propose
to use the hand motion information to locate the boundary
points of each gesture in a continuous stream of gestures. A
boundary point is detected whenever the hand pauses during
gesturing. For gestures having global motion only or ges-
tures having both global and local motions, the gesturing
hand traverses through space to form a gesture trajectory.
After a gesture trajectory is completed, the hand pauses for a
while and then moves with very high velocity to the starting
position of the next trajectory. Based on this, we propose to
detect movement epenthesis—and distinguish it from a ges-
ture stroke—by observing the motion of the hand between
pauses in the input hand motion video. Whereas a movement
epenthesis phase is simply a fast hand stroke, a gesture phase
can be divided into three motion stages: preparation, stroke,
and retraction. However, the scheme will result in the incor-
rect spotting of gestures under the conditions listed below:

– It is not correct to assume that between gestures there
is always some non-gestural hand movement. For exam-
ple, there is generally no extra movement if a gesture
ends in the same position or pose at which the next ges-
ture begins. In this case, the two gestures are adjoined to
each other in the sequence with a common pause indi-

cating the end of the first gesture and the start of the next
gesture.

– For a sequence of static hand poses (fluent finger
spelling), there is generally no motion during the gestur-
ing period while the hand may move in between two ges-
ture poses because of movement epenthesis. That means
a pause itself in the sequence corresponds to a gesture
sign as if the starting point and endpoint of the gesture
have merged together.

– For gestures involving global hand motion, there may be
some pauses within a single gesture. When the hand tra-
verses through space, it makes one or more hand strokes
to build up a complete gesture trajectory with pauses
between the strokes.

The proposed method is described in more details in the
following sections.

2 The state of the art

A threshold model based on a hidden Markov model (HMM)
was proposed to recognize and spot the gestures [4] in which
motion chain code (MCC) is used as the feature. The system
was trained with a huge number of isolated samples. The ges-
ture is spotted when it crosses the adaptive threshold and the
boundary points are detected using the Viterbi back-tracking
algorithm. The major limitation of this method is that as the
gesture vocabulary increases the number of states increases.
Most errors come from the failure of hand extraction that
distorts the hand trajectory and also the MCC. Our proposed
method focuses on solving this problem by replacing the
MCC with other trajectory-based features.

A gesture spotting technique was proposed using a finite
state machine (FSM) [5]. The features used are various
motion parameters like the velocity of the hand. The velocity
of the hand is less at the beginning and end of the gesture,
and the hand abruptly moves during movement epenthesis.
However, this method cannot be used as a generalized model
for all the gestures.

Gesture spotting with a threshold model based on con-
ditional random fields (CRF) combines motion-based and
location-based features [6]. The MCC of the hand trajectory
is used as a motion-based feature. As with other methods,
variations in the extracted MCC greatly affect the perfor-
mance of the recognizer.

A framework that simultaneously spots and recognizes
gestures by using the density functions of the states for each
of the gesture classes was proposed in [7]. A 4D position-
flow vector is used as the feature, which contains the pixel
position of the centroid of the hand and its two dimensional
velocity. This method is also not applicable to all kinds of
gestures.
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A sign language recognition system was developed using
three appearance-based features: PCA, kurtosis position, and
the MCC [8]. The hand is tracked and the trajectory is rep-
resented by MCC. These three features are given to three
separate HMM networks for recognition. Thus, the overall
recognition accuracy also depends on MCC.

Though the segmentation and coarticulation detection are
the main open research issues for continuous hand gesture
recognition, few vision-based approaches have been reported
prior to this work. The techniques developed so far for coar-
ticulation detection have not always been successful for a
wide range of gesture vocabulary. Although powerful clas-
sifiers for labeling the sequential data exist, feature selec-
tion is key to obtaining a high recognition rate. In gesture
recognition, the features must be selected so as to enable the
classifier to unambiguously recognize and segment the con-
tinuous gestures. As explained earlier, most of the existing
approaches use the motion chain code as a feature. The MCC
is a rotation invariant feature for object recognition. But in
gesture recognition, many variations occur in the extracted
MCC even when the same gesture is performed repeatedly.
This is because of ambiguity in hand image segmentation
and trembling of the gesturing hand.

As an example, Fig. 1 shows frames of the segmented hand
regions of the gesture trajectory Eight. The area and the ori-
entation of the segmented hand differs from frame to frame.
This causes the extracted trajectory to deviate from the actual
trajectory, resulting in drastic variations in the MCC, which
was encoded from the information of the motion trajectory.
This variation in the MCC causes difficulty in modeling a ges-
ture. Figure 2 shows the extracted gesture trajectory varies
from the actual one. Hence, for a particular gesture, the MCC
will not be unique. To overcome this problem, we propose
a much smoother chain code feature than the conventional
MCC. The new feature gives better results. Additionally, two
other features are proposed to cope with the problem of move-
ment epenthesis.

3 Proposed system

This paper focuses on the recognition of continuous digits
gesticulated by the user. These gestures, shown in Fig. 3, are
dynamic, consisting only of global hand motion. These ges-
tures are performed continuously, so movement epenthesis
and coarticulation come into consideration as the gesturer
has to move his hand from the endpoint of one gesture to the
starting point of other gesture. Thus, the recognition system
should be capable of detecting the meaningful gestures from
the continuous stream of gesticulation. Due to coarticulation,
the appearance of a sign/gesture, especially at the beginning
and end, can be significantly different under different sen-
tence contexts, which makes the recognition of gestures in

Fig. 1 Various frames of the segmented hand of the gesture Eight

Fig. 2 Examples of trajectories of isolated gestures

sentences hard. In other words, when gestures are produced
continuously, each gesture may be affected by the preceding
gesture, and sometimes by the gesture that follows it. How-
ever, movement epenthesis occurs when the hand moves very
fast from the end position in a gesture to the starting position
in the following gesture. This implies that these movements
are deliberate and are essential for connecting two gestures in
a sequence. A pictorial representation of movement epenthe-
sis and the embedded gestures is shown in Fig. 4.

In our method, we use CRF to classify the sequential data
(feature vector), because they can model the gestures by con-
sidering the dependencies in the sequential data. CRFs have
the ability to relax the independence assumption of hidden
Markov models [9,10]. However, an HMM is a stochastic
automaton that models the sequential data by generating the
observation while transiting from one state to another state
[11]. Whereas, CRF is a non-generative finite state model
with a single exponential for joint probability of the label
sequence given an observation sequence. Most of the existing
gesture spotting approaches in the literature rely on dynamic
time warping (DTW), neural networks (NN), or HMM.

Once a particular gesture has been recognized, it needs to
be mapped to a corresponding action, for example, to control
a robot or activate a window menu. A gesture-based HCI sys-
tem also allows a person to communicate with a computer via
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Fig. 3 Examples of trajectories of isolated gestures

(a) (b)

(c)

Fig. 4 Problems in geture recognition include movement epenthesis,
indicated by dotted lines in (a) and (b), and the embedding of one gesture
in another. In c Five is embedded in Eight

sign language and, thus, enables those with hearing impair-
ment to interact with a computer more easily. Our method is
basically intended for these kinds of HCI applications. The
proposed scheme for continuous hand gesture segmentation
and subsequent recognition is described in the sections to
follow.

3.1 Hand segmentation and gesture trajectory estimation

Hand segmentation is typically a first step in tracking the
movement of the hand. In our method, the face region in the
frame is removed by using a face detection algorithm. Skin
color-based segmentation is used to extract the skin regions

Fig. 5 Hand segmentation by the proposed method

of the hand from the video frame. Skin color is clustered in a
very small region in a color space so that skin regions can eas-
ily be separated by selecting a proper threshold. In addition,
color spaces are selected that are less susceptible to changes
in lightning. HSV and YCbCr are two color spaces that sep-
arate the chrominance ([H S] or [Cb Cr]) and luminance (V
or Y) components [12]. So, after removing the face region,
the RGB image is converted to HSV and YCbCr images, and
subsequently a threshold is applied to the chrominance com-
ponents of both the HSV and YCbCr color spaces. Finally, a
logical AND operation is performed between them to obtain
the likely skin region.

After getting the skin color segmented regions, the largest
connected segment corresponds to the palm region of the
hand. Figure 5 shows various intermediate results. After
determining the binary alpha plane corresponding to the palm
region of the hand, moments are used to find the center of
the hand. The 0th and the 1st moments are defined as

M00 =
∑

x

∑

y

I (x, y), M10 =
∑

x

∑

y

x I (x, y),
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M01 =
∑

x

∑

y

y I (x, y) (1)

Subsequently, the centroid is calculated as

xc = M10

M00
and yc = M01

M00
(2)

In the above equations, I (x, y) is the pixel value at the
position (x, y) in the image. Since the background pixels are
assigned 0, the centroid of the hand in a frame is also the cen-
troid of the total frame. Therefore, in moment calculations,
we may either take the summation over all pixels in the frame
or over only the hand pixels.

Finally, the gesture trajectory is formed by joining all the
calculated centroids in a sequential manner. However, this
trajectory may be noisy for the following reasons:

– Points too close
– Isolated points far from the correct trajectory due to a

change in the hand shape
– Unclosed endpoints
– Hand trembling
– Unintentional movements

Therefore, to reduce these effects, the final trajectory is
smoothed out by considering the mean value of a specified
point and its two neighboring points, i.e.,

(x̂t , ŷt ) = ((xt−1 + xt + xt+1)/3, (yt−1 + yt + yt+1)/3)

(3)

So, a dynamic hand gesture (DG) can be interpreted as a
set of points in a spatiotemporal space:

DG = {(x̂1, ŷ1), (x̂2, ŷ2), . . . . . . , (x̂t , ŷt )} (4)

3.2 Extraction of proposed trajectory-based features

Given the sequence of centroid of segmented hand, three
features are extracted as shown in Table 1. The proposed
three dimensional feature vector is extracted to use the CRF
effectively, so that it can spot the gestures and recognize them.

As shown in Fig. 6, feature CE is extracted from the angle
of the major axis of the ellipse which is fitted to the previous
r points P = {Xt }T

t=T −r of the motion trajectory, where
Xt = (xt , yt ). The motivation behind this idea is to obtain a
chain code that preserves the shape of the motion trajectory
even if the extracted trajectory is not smooth. The ellipse
is fitted using least squares fitting of conic sections. Let us
assume an ellipse with a set of parameters A = [a b c d e f ]T

as

E (A, X) = ax2 + bxy + cy2 + dx + ey + f

Table 1 Proposed features

Features

CE Chain code obtained by the angle of orientation of the ellipse

L E Length of the major axis of ellipse (small/medium/large)

PH Position of the hand (top/middle/bottom)

Fig. 6 Extraction of features CE and L E

The algebraic distance E (A, X) is the product of χt =
[xt

2 xt yt yt
2 xt yt 1] and A.

E (A, X) = [xt
2 xt yt yt

2 xt yt 1][a b c d e f ]T = χt A

The parameter set A is found using the least-squares tech-
nique that minimizes a distance metric ε (A) between the
data points and the ellipse E .

ε (A) =
T∑

t=T −r

E(A, Xt )
2 = ‖D A‖2

where, D = [
χT −r χT −r+1 . . . χT

]
is the design matrix. To

avoid the trivial solution A = 06, different constraints are
applied to the parameter A. We chose the computationally
efficient algorithm given in [13] for ellipse fitting. The min-
imization of ‖D A‖2 subject to the constraint 4ac − b2 = 1
gives only one solution, which is an ellipse. The counter-
clockwise angle of the major axis of that ellipse (θM A) is
used to find our proposed chain code/feature CE , whereas a
conventional MCC is calculated with the slope of the lines
joining to successive points.

In our proposed method, starting from the first trajectory
point (at the beginning of a gesture), an ellipse is fitted to
the set of points of the motion trajectory until r points are
enclosed. Then, the straight line joining the two extreme
points of the major axis of the ellipse is determined. Next, as
shown in Fig. 6, the said ellipse is fitted to the next r points
starting from the second trajectory point, and the straight line
joining the two extreme points of the major axis of the ellipse
is determined. Finally, the angle (�θM A) is calculated from
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Fig. 7 Ellipse fitting to gesture trajectory Five for r = 6

these two lines, which is subsequently used for determining
the proposed chain code/feature. This process is performed
for all the points of the motion trajectory. In our experiment,
the value of r is set to 6. It is experimentally observed that
the hand stops for at least six frames at gesture boundaries,
and the length of the major ellipse is very small for the end-
points. This consideration additionally helps us to detect the
endpoints (gesture spotting). Figure 7 shows various instants
of ellipse fitting corresponding to gesture trajectory five.

As explained in Sect. 1, the conventional MCC fails to
describe the original track of the gesture due to segmentation
ambiguities. But the new feature CE preserves the shape of
the gesture trajectory, because in this case the rate of change
in the orientation angle (�θM A) is much lower. Hence, it
results in a smoother chain code. Table 2 shows the difference
between MCC and CE for the gesture One. The same gesture
is performed three times and the parameters MCC and CE are
extracted. Clearly, the proposed feature CE nicely encodes
the shape of the gesture trajectory.

Next, the feature L E is obtained from the length of the
major axis of the ellipse L M A. As shown in Fig. 7, L M A

decreases at the endpoints of a gesture. It is a ternary-valued
feature [(S) or (M) or (L)], which is obtained by setting the
thresholds Ta and Tb. It indicates whether the length of L M A

is small (S) or medium (M) or large (L). Hence, the tempo-
ral information of the hand trajectory can be known and the

Table 2 Example showing the difference between MCC and CE for
gesture trajectory One

MCC CE

676556566566066066666667
6055

6666666666666666666666666666

3567007676660666665667620 3446666666666666666666666

5665666766660666666672 5666666666666666666666

information helps in gesture spotting. This also helps in inter-
nal modeling of gestures because few gestures have interme-
diate stoppages in between the starting and the endpoints
of the gestures, namely, motion trajectories of the gestures
three, two, four, seven, and nine. The feature L E is extracted
as follows:

L E =
⎧
⎨

⎩

S, L M A ≤ Ta

M, Ta < L M A ≤ Tb

L , L M A > Tb

Finally, the feature PH represents the position of the hand
in the frame. It is also a ternary-valued feature (T or M or
B). As shown in Fig. 8, each image frame is horizontally
divided into three regions, which are called as the top, mid-
dle, and bottom. Subsequently, PH in each frame is calcu-
lated by setting thresholds Tc and Td for the x coordinate of
the centroid of the hand. This feature is targeted to detect
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Fig. 8 Extraction of feature PH

Fig. 9 An example showing the proposed set of features (CE , L E , PH )
for the gestures Five, indicated by the red-colored trajectory, and Eight,
indicated by the blue-colored trajectory

the movement epenthesis. The boundaries of the movement
epenthesis stroke are generally either in the top or bottom
position of a video frame, whereas the middle region always
contains the body of the gesture. The feature PH is derived
as follows:

PH =
⎧
⎨

⎩

T, xt ≤ Tc

M, Tc < xt ≤ Td

B, xt > Td

The proposed features for the gestures ‘Eight’ and ‘Five’
are shown in Fig. 9. It is evident that these three features may
be the same for both of the gestures until point p8, but the
feature L E changes afterwards. Hence, the proposed features
can detect a gesture when it is embedded in another gesture.

3.3 Proposed gesture recognition scheme

Finally, as shown in Fig. 10, the extracted features CE , L E ,

and PH are applied to the proposed classifier. In our experi-
ment the train/test sequence o = {o1, o3, o3, . . . , om} is asso-
ciated with the label sequence w = {w1, w3, w3, . . . , wm}.
The probability of the label sequence w given o is calculated

by using a log-linear exponential model:

p(w|o) = 1

z(o)
exp

⎛

⎝
p∑

j=1

α j t j (wi−1, wi , o, i)

+
q∑

k=1

βksk (wi , o, i)

)

z(o) =
∑

w

exp

⎛

⎝
p∑

j=1

α j t j (wi−1, wi , o, i)

+
q∑

k=1

βksk (wi , o, i)

)

where, t j (wi−1, wi , o, i) is a transition feature function of
the observation sequence and the labels at positions i and
i − 1, sk (wi , o, i) is a state feature function of the label at
position i and the observation sequence, p and q are the
total number of features for transition feature functions and
state feature functions, α j and βk are weights to the exponent
which are estimated from training data by using the maxi-
mum entropy criterion, and z(o) is a normalization factor to
ensure that

∑
w p(w|o) = 1.

The transition and state feature functions are calculated
using the binary-valued predicates on the observation data.
An example of such a predicate in our experiment is given
by

g (o, i) =
⎧
⎨

⎩

1 if o is at the position i defined by the
feature value (4, S, B)

0 otherwise.

An example of the state and the transition feature functions
that takes on the value of the predicates are given by

t j (wi−1, wi , o, i)

=
⎧
⎨

⎩

g (o, i) if wi−1 = two
and wi = one

0 otherwise

sk (wi , o, i) =
{

g (o, i) if wi = one
0 otherwise

These transition and state feature functions help the CRF
to model the data with arbitrary dependencies. An itera-
tive algorithm called improved iterative scaling (IIS) is then
used to estimate the parameters θ = {α1, α2, . . . ;β1, β2, . . .}
from the training data � = {(

ot , wt
)}T

t=1 that maximizes the
log-likelihood objective function, which is found as

L (θ) =
T∑

t=1

log pθ

(
wt |ot)

∝
∑

o,w

p (o, w) log pθ (w|o)
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Fig. 10 Block diagram
showing proposed set of
features CE , L E and PH

The conditional probability of the label sequence is computed
efficiently by using the matrices. Let there be (n + 1) labels
in the label sequence with a starting and stopping label w0 =
start and wn+1 = stop. Then pθ (w|o) is calculated using a
set of n + 1 matrices. In this, {Mi (o) |i = 1, 2, . . . , n + 1}
where, Mi (o) is a |y × y| matrix with elements of the form

Mi
(
w′, w|o) = exp

⎛

⎝
∑

j

α j t j (wi−1, wi , o, i)

+
∑

k

βksk (wi , o, i)

)

The normalization factor zθ (o) is the product of these matri-
ces

zθ (o) = (M1 (o) M2 (o) . . . . . . Mn+1 (o))start, stop

And the conditional probability of the label sequence w is
given as

pθ (w|o) =
∏n+1

i=1 Mi (wi−1, wi |o)(∏n+1
i=1 Mi (o)

)

start, stop

In our proposed method, CRF is trained with one label
for each gesture and an extra label is added to determine
the non-gestural movements. Apart from the isolated ges-
tures, all possible non-gestural movements are trained. To
model the dependencies of non-gestural movements with
gestures, a combination of gesture and non-gestural obser-
vation sequences are used in the training data.

4 System performance evaluation

The proposed system was tested in real-time on an Intel�
Core I3-based personal computer. The input images are cap-
tured by a CCD camera at a resolution of 480 × 480 pixels.
The system is evaluated using both isolated and continuous
gestures. During the evaluation, we use a comparatively sim-
ple background as shown in Fig. 3. The background enhances
hand segmentation performance. Moreover, all the experi-
ments are performed with nearly constant uniform illumina-

tion, and all the gestures under consideration are performed
with one hand only.

In the evaluation, we used gesture sequences correspond-
ing to the numerals 0 to 9, as shown in Fig. 3. To obtain
the feature L E , the thresholds Ta and Tb were set to 60
and 180, respectively. To extract the feature PH , the cap-
tured image frame is divided into three equally spaced hor-
izontal blocks. As the frame resolution is 480 × 480, the
thresholds Tc and Td were set to 160 and 320, respec-
tively. To ensure spatiotemporal variability, each gesture was
performed by 10 signers. Even if the same person tries
to perform the same sign twice, small variation occur in
the speed and position of the hands. In total, 50 isolated
samples per gesture were used to train the CRF. Subse-
quently, the same CRF was again trained with another 50
samples per gesture class with each feature sequence cor-
responding to the selected gesture appended with the pos-
sible movement epenthesis segments. This training method
creates an extra label in the CRF to handle movement
epenthesis as the CRF learns the dependencies of move-
ment epenthesis for the gestures. In addition, by setting the
window size to 3, the CRF is designed to use only three
past and future observations to predict the current state.
Motion trajectories extracted by our method are shown in
Fig. 11.

4.1 Isolated gesture recognition

The classification results corresponding to different gesture
sequences are shown in Table 3. The overall recognition rate
for our proposed method is 96.0 % as compared with 69.6 %
when the MCC is used as a feature vector, a 26.1 % increase.
The improvement is mainly because of the smoother chain
code obtained by our proposed feature CH . However, a rel-
atively low recognition rate is reported for the gesture One,
which might be due to the inability of CRFs to model the
long-range dependencies. This can be overcome by increas-
ing the window size, but this generates many features, which
increases the computational complexity. Also, we note that
our recognizer misclassifies the gestures One and Seven in
some critical conditions. The misclassification occurs when
the hand stops too long in the middle of the gesture Seven.
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Fig. 11 Motion trajectories extracted by the proposed method

4.2 Continuous gesture recognition

For continuous gesture recognition, 40 video clips of dif-
ferent continuous gestures that contains movement epenthe-
sis are considered and 216 sample gestures are used to test
the system. We have only considered a few typical possible
movement epenthesis and the embedded gesture cases for the

evaluation of the proposed algorithm. Some of the test gesture
trajectories are shown in Fig. 12. Three parameters are used
to evaluate the performance of the proposed continuous ges-
ture recognizer. They are labeled as insertion error, deletion
error, and substitution error. The insertion error occurs when
the spotter reports a nonexistent gesture. The deletion error
occurs when the spotter fails to detect a gesture. The substitu-
tion error occurs when the spotter falsely classifies a gesture.
The detection ratio is the ratio of correctly recognized ges-
tures over the number of input gestures. Table 4 shows the
performance of our proposed system in terms of the above
mentioned parameters. The proposed system recognizes the
continuous gestures with an accuracy of 88.9 %. As shown
in Fig. 12, the recognized gestures are displayed in the form
of blue-colored text appearing in the top right corner of the
image, where ? indicates the movement epenthesis present
in between the gestures. Additionally, as shown in Fig. 13, a
gesture-based numeric calculator is implemented to highlight
a possible application of our proposed method.

5 Conclusions

One critical issue in continuous gesture recognition research
is to identify meaningful gestures in a continuous stream of
body movements. This may be accomplished by spotting pre-
cisely when a gesture in the sequence starts and ends. This
is the goal of gesture spotting. Gesture spotting is essential
for a recognition system to work continuously without need
of human intervention. In particular, only if gesture spotting
is supported in a vision-based interface, it is possible for a
user to interact with the recognition platform using natural
gestures without any restrictions. By spotting gestures in a

Table 3 Experimental results: isolated gesture recognition rates

No. of training samples per class: 50 No. of test samples per class: 25 Acc. rate %
Class label No. of test pattern assigned to predefined class

Zero One Two Three Four Five Six Seven Eight Nine

Zero 25 0 0 0 0 0 0 0 0 0 100

One 0 21 0 0 0 0 0 4 0 0 84

Two 0 0 25 0 0 0 0 0 0 0 100

Three 0 0 0 25 0 0 0 0 0 0 100

Four 0 0 0 0 23 2 0 0 0 0 92

Five 0 0 0 0 0 25 0 0 0 0 100

Six 0 0 0 0 0 0 25 0 0 0 100

Seven 0 4 0 0 0 0 0 21 0 0 84

Eight 0 0 0 0 0 0 0 0 25 0 100

Nine 0 0 0 0 0 0 0 0 0 25 100

Avg. 96.0
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Fig. 12 Continuous gestures:
a Three-Two, b Four-Seven,
c Eight-Six, d Two-Four-One

Table 4 Continuous gesture
recognition using the proposed
features

Gesture No. of gestures Insert Delete Substitute Correct Detection (%)

Zero 16 0 2 3 11 68.75

One 20 0 0 4 16 80.00

Two 25 0 0 0 25 100.00

Three 26 0 0 0 26 100.00

Four 21 0 0 0 21 100.00

Five 19 1 0 1 18 94.74

Six 20 0 3 5 12 60.00

Seven 25 1 1 3 21 84.00

Eight 29 0 0 1 28 96.55

Nine 25 2 1 1 23 92.00

Total 226 4 7 18 201 88.94

continuous video stream, we can automatically remove unin-
tentional movements arising between gestures.

Again, coarticulation detection is one of the main chal-
lenges in continuous gesture recognition. It is difficult to dis-
tinguish between a valid gesture phase and the coarticulation
phase only from the motion information. That is why, few
vision-based approaches for estimating coarticulation have
been reported in the literature to date. The methods proposed
so far do not address the problems encountered in recogniz-
ing all types of continuous hand gestures in a vision-based
platform. Most of the existing algorithms use the glove envi-
ronment and are successful only for some specific gesture

vocabularies. The techniques developed so far for coarticu-
lation detection are generally not useful for a broad gesture
vocabulary. This is because, motion interpretation itself is
an ill-posed problem in the sense that a unique solution can-
not be guaranteed. Moreover, the existing algorithms do not
address the problems associated with the extraction of the
smoothed motion trajectory and the more consistent motion
chain code.

This work focuses primarily on solving two basic prob-
lems in continuous gesture recognition, namely, gesture spot-
ting and movement epenthesis detection, by extracting a
smoothed motion trajectory via a modified motion chain
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Fig. 13 A gesture-based calculator

code. Its main contribution is the extraction of three novel
trajectory-based features to tackle movement epenthesis in
continuous hand gesture recognition. The proposed system
for movement epenthesis detection and subsequent recog-
nition of individual gestures in a continuous stream of ges-
tures promises to perform well on different types of ges-
ture sequences having different spatiotemporal characteris-
tics and motion behavior.

The proposed gesture recognition scheme overcomes the
fundamental problems associated with continuous hand ges-
ture recognition with the help of novel trajectory-based fea-
tures. The experiments demonstrate that the system is 96.0 %
accurate for recognizing isolated gestures, and 88.9 % accu-
rate for continuous gestures. The number of thresholds to
obtain the features L E and PH are application dependent.
Evidently, CRFs can model the sequential data by consider-
ing the arbitrary dependencies, but fail to model the long-
range dependencies. This is the only reason the recogni-
tion rate for gesture One is comparatively low. There is a
probabilistic model called hidden conditional random fields
(HCRF), which can model the long-range dependencies of
the observed data [14]. Extending the proposed system using
HCRF to recognize sign language is left for future work.
Future work also includes the accurate segmentation and

tracking of a moving hand from a cluttered dynamic back-
ground and the recognition of more fluent hand gestures in
the form of continuous sign language.
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