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a b s t r a c t

One challenging research problem of hand pose recognition is the accurate detection of
finger abduction and flexion with a single camera. The detection of flexion movements
from a 2D image is difficult, because it involves estimation of finger movements along the
optical axis of the camera (z direction). In this paper, a novel approach to hand pose
recognition is proposed. We use the concept of object-based video abstraction for
segmenting the frames into video object planes (VOPs), as used in MPEG-4, with each
VOP corresponding to one semantically meaningful hand position. Subsequently, a
particular hand pose is recognized by analyzing the key geometrical features and the
textures of the hand. The abduction and adduction movements of the fingers are analyzed
by considering a skeletal model. Probabilistic distributions of the geometric features are
considered for modeling intra-class abduction and adduction variations. Additionally,
gestures differing in flexion positions of the fingers are classified by texture analysis using
homogeneous texture descriptors (HTD). Finally, hand poses are classified based on
proximity measurement by considering the intra-class abduction and adduction and/or
inter-class flexion variations. Experimental results show the efficacy of our proposed hand
pose recognition system. The system achieved a 99% recognition rate for one-hand poses
and a 97% recognition rate for two-hand poses.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The use of the human hand as a natural interface for
human–computer interaction (HCI) motivates research on
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hand gesture recognition. Vision-based hand gesture recog-
nition involves the visual analysis of hand shape, position,
and/or movement. Accordingly, the basic aim of gesture
recognition research is to build a system that can identify
and interpret human gestures automatically. Such a system
can be used for manipulation, such as controlling robots or
other devices without any physical contact between the
human and the interface. It can also be used for commu-
nication, such as conveying information through sign lan-
guage [1,2]. A sign language recognition system must be able
to recognize the changing poses of the hand.

Various methods have been proposed for recognizing
accurate hand poses. However, because an articulated
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model of the hand has many degrees of freedom, detecting
the finger movements has remained a challenge. Current
solutions rely either on data gloves or on computer vision.
Data gloves are made cumbersome by the many cables
connecting them to the computer. This can render human–
computer interaction unnatural. Awkwardness in using
gloves is overcome by using vision-based noncontact
interaction techniques.

Vision-based methods for hand gesture recognition are
performed by two major approaches, namely appearance-
based and model-based representations. For hand pose
analysis, model-based methods are most suitable because
they provide accurate estimation of hand parameters with-
out loss of spatial information [1]. Many methods for hand
pose detection take geometrical properties of the hand and
model the location and movement of the fingers [3–5]. Hand
poses are analyzed by applying physiological constraints on
hand kinematics and dynamics. These constraints include
joint-angle limits on the extension, flexion, adduction, and
abduction of metacarpophalangeal (MP) joints. The con-
straints determine the types of movements the hand can
make. Matsumoto et al. implemented this kind of approach
with a skeletal hand model [6]. They used a voxel model
with an estimation algorithm for recognizing different hand
poses with a multi-perspective camera system.

Some methods incorporate inverse kinematics and
three-dimensional (3D) reconstruction techniques to esti-
mate the 3D hand pose from single 2D monocular images.
Lee et al. proposed an articulated model with hand
kinematics constrains to reconstruct a 3D image from
monocular view of the hand pose [7]. They took intra-
and inter-finger constrains with 20 DOF for 3D model
fitting of the 2D image. They only model the static hand
poses including self occlusion with physical constrains into
a 3D model. Guan et al. also estimated 3D hand pose
parameters from a single image only using 12 DOF with an
articulated model of the hand [8]. They used eight 2D
projected features from the geometrical properties of the
hand to retrieve the 3D hand pose. However, they only
modeled the 3D pose from different views without con-
sidering simultaneous movements of fingers with adduc-
tion/abduction angle and flexion movements of fingers.
Weng et al. developed a real-time motion capturing
system using a 3D hand model with a state-based particle
filter to estimate the motion of individual fingers [9]. But
tracking fingers is computationally expensive given their
high degree of freedom. Most of the model-based gesture
recognition systems used 3D articulated hand models to
characterize the parameters of the hand, viz., 3D positions
of all joint angles, fingertip positions, and their orientation
[10,11]. These methods use 3D model fitting technique
through minimization of a cost function based on extracted
features.
Fig. 1. First four hand poses show only the abduction and adduction movem
movements of the fingers.
To estimate kinematic parameters and perform 3D
reconstruction, these algorithms involve high computa-
tional complexity. In addition, the use of multiple cameras
and the depth sensors increases the overall system com-
plexity [12–14]. Most of the existing methods make use of
hand segmentation by skin color. Skin color offers an
effective and efficient way to segment out hand regions.
However, this approach is degraded by variation in skin
tone, lighting conditions, and dynamic scenes.

To address some of these issues, we use the concept of
object-based video abstraction for segmenting the frames
into video object planes (VOPs), as used in MPEG-4, where
the hand is considered as a video object (VO). A binary
model for the moving hand is derived and is used for
tracking in subsequent frames. The Hausdorff tracker is
used for this purpose [15].

A notable advantage of our proposed scheme is its
robustness to background noise. The tracker can track the
hand as an object very efficiently even without adopting
any kind of background filtering. Moreover, unlike tracking
algorithms that use Kalman filters, the VOP generation
algorithm does not require extra computation for scaling
and rotation. In our algorithm, the concept of “shape
change” can accommodate both the scaling and the rota-
tion of the tracked video object in successive frames of the
gesture video sequence. The only computation required for
the shape change is the model update in each frame of
the video sequence. The model update computation using
the motion vector is much simpler computationally than
the other computations, viz., the affine transformation
required for scaling and rotation.

Subsequently, we propose a method to recognize hand
poses from the 2D images by modeling abduction, adduc-
tion, and/or flexion movements of fingers. These two types
of hand poses are illustrated in Fig. 1.

We earlier proposed a method for recognizing abduc-
tion and adduction movements of the fingers [16]. The
hand poses having only abduction and adduction move-
ments of the fingers are modeled by a multidimensional
Gaussian distribution. In this paper, another model is
proposed to recognize flexion movements of the fingers,
which is integrated with our earlier proposed model to
recognize different hand poses. Hand poses having only
flexion movements of the fingers are modeled by homo-
geneous texture descriptors (HTD) [17]. Representation of
flexion movements of the fingers by analyzing only the
texture information of the fingers is quite simple and
straightforward as compared with 3D model-based meth-
ods. Our approach has advantages over previous methods
in the sense that we can model both the abduction/
adduction and flexion movements of fingers together from
2D monocular images. Finally, proximity measure is used
to classify the input gestures by comparing the input
ents of the fingers. Remaining four hand poses show only the flexion
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features with the templates in the database. The overall
block diagram of the proposed system is illustrated in
Fig. 2.

The organization of the rest of the paper is as follows.
Section 2 and Section 3 present our proposed hand pose
recognition approach for abduction/adduction finger
movements and for flexion movements, respectively.
Section 4 reports experimental results. Finally, we draw
our conclusion in Section 5.
Fig. 2. Block diagram of the proposed scheme.

Fig. 3. Block diagram for the V
2. Proposed hand pose recognition scheme for abduction
finger movements

In our proposed method, a user-specific hand model is
obtained via a series of image segmentation and morpholo-
gical operations. The system uses the model to determine the
user's hand pose. The hand is first separated out from the
forearm and some key geometric features of pre-defined
gestures are obtained after hand calibration. These features
are subsequently modeled as a Gaussian distribution to
consider spatiotemporal variations of the finger positions
during gesticulation. Based on the proximity of the incoming
gestures with the pre-defined gesture patterns, the input
gesture can be recognized. The proposed scheme is described
in more detail in the sections to follow.

2.1. Proposed scheme for hand image segmentation and
VOP generation

From the gesture video sequence, VOPs for different
hand positions are obtained. During this phase Hausdorff
distance is used to track the change in hand positions from
one frame to the next.

Hausdorff distance measure can be used to measure the
similarity between two shapes. It is defined as the max-
imum function between two sets of points O and I, as
given below [15]

HðO; IÞ ¼maxfhðO; IÞ;hðI;OÞg ð1Þ
where

hðO; IÞ ¼max
oAO

min
iA I

Jo� iJ
OP generation algorithm.
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and

hðI;OÞ ¼max
iA I

min
oAO

J i�oJ

Feature points are denoted by o1;…; om for the set O and
i1;…; in for the set I. The computation of Hausdorff
distance is performed by the distance transform algorithm.
For this, mask chamfer 5-7-11 is used.

From the gesture video sequence, VOPs for different
hand positions are obtained. The VOP generation program
may be divided into four stages as depicted in Fig. 3:
�

Fig
(f)
Stage 1: Initial hand model extraction.

�
 Stage 2: Edge detection of input video sequences.

�
 Stage 3: Object tracking and model update.

�
 Stage 4: VOP extraction.
The initial model image is generated from the first two
gray-scale images, as shown in Stage 1 block of Fig. 3. This
model is continuously updated in Stage 3 and is used for
object tracking. The edge image for each frame is gener-
ated in Stage 2 and is also used in Stage 3. In Stage 4, VOPs
are extracted from the corresponding updated model.

The core of this algorithm is an object tracker that
matches a 2D binary model of the video object against
subsequent frames using the Hausdorff distance. The best
match found indicates the translation the object has
undergone, and the model is updated in every frame to
accommodate for rotation and change in shape. However,
the method will be effective only if the video object
changes slowly from one frame to the next, which we
assume to be true in the present case.
. 4. Initial model generation: (a)–(b) Two initial video frames, (c) edge imag
median filtering of threshold difference image, (g) thinning, and (h) connect
2.1.1. Initial hand model generation
An initial model is necessary to track the video object in

successive video frames of the incoming video sequence.
This is accomplished by the following steps:

Change detection: Generates a change detection mask
by thresholding a difference image formed from the two
initial frames in a gesture sequence.

Median filtering: Removes noises in the threshold
difference image thereby generating more accurate
initial model.

Thinning: Reduces the width of the model by a mor-
phological thinning process.

Connected component labeling: Eliminates short edges
of the model.

An example of initial model generation using all these
steps is demonstrated in Fig. 4.
2.1.2. Edge detection and background filtering
Once the initial hand model is obtained, the task is to

determine in subsequent frames any change in the hand
shape with respect to the model. Now, to reduce the
computational cost, we propose to use edge images instead
of the complete frames.

Background filtering is a desired step when VOPs are
extracted from a cluttered background. Removal of back-
ground edges reduces the number of points to be considered
during the process of shape change detection and thus
speeds up the tracking process. However, our algorithm is
capable of functioning even without background removal as
long as the background does not change significantly. This is
because our algorithm uses large variation in hand shape for
gesture modeling. Therefore, as long as the background
e of the first frame, (d) difference image, (e) threshold difference image,
ed component labeling.
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edges are somewhat stationary in a sequence, the perfor-
mance of our algorithm is not degraded.

2.1.3. Hand tracking and model update
The Hausdorff object tracker finds the position where

the input hand model best matches the next edge image
and returns the motion vector MVi that represents the best
translation. As the tracked object moves through a video
sequence, it may rotate or change in shape. To allow for
this, the model must be updated every frame. The model
image is updated by using the motion vector. First, the
current model Mi�1 is dilated and then shifted by motion
vector MVi. Then, the portion of edge image ðEiÞ that
overlaps this shifted model is selected as the new model
image Mi, as shown in the block diagram given in Fig. 3.

2.1.4. VOP extraction
A horizontal candidate for the object in a frame is the

region in a row between the first and last edge points, while
the vertical candidate is the same region in a column. After
finding all the horizontal and the vertical candidates in a
frame, the VOP is generated by logical AND operation and
further processed by alternative use of morphological opera-
tions like closing and filling. We propose using the logical
AND operation (Fig. 5e) because, unlike the OR operation
(Fig. 5d), it provides information on individual fingers during
hand gestures.

2.2. Detection of centroid

After determining the binary alpha plane correspond-
ing to the palm region of the hand, moments are used to
find the center of the hand. The 0th and the 1st moments
are defined as

M00 ¼∑
x
∑
y
Iðx; yÞ; M10 ¼∑

x
∑
y
xIðx; yÞ;

M01 ¼∑
x
∑
y
yIðx; yÞ ð2Þ

Subsequently, the centroid is calculated as

xc ¼
M10

M00
and yc ¼

M01

M00
ð3Þ

In the above equations, Iðx; yÞ is the pixel value at the
position (x,y) in the image. Since the background pixels are
assigned 0, the centroid of the hand in a frame is also the
centroid of the total frame. Therefore, in moment calcula-
tions, we may either take the summation over all pixels in
the frame or over only the hand pixels.
Fig. 5. Results of logical OR and AND operations on horizontal and vertical V
candidate, (d) OR operation, in which the thumb and fingers are lost and (e) AN
2.3. Hand normalization

In this step, the extracted skin region corresponding to
the hand region is normalized to eliminate variations in
the distance between the gesturing hand and the camera.
This normalization simply nullifies the motion of the hand
normal to the direction of the camera. The edge mask of
the segmented hand is first extracted by using Canny edge
detector. The normalization constant related to the overall
hand size is then computed by the following equation:

N0 ¼
∑

ðxe;yeÞAE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxe�xcÞ2þðye�ycÞ2

q
M

ð4Þ

where E is the set of all pixels belonging to the edge mask,
and M is the total number of edge pixels.

2.4. Determination of orientation of hand and hand
bounding box generation

The orientation of the hand can be estimated by the
position of the fingertips and the centroid of the hand
(palm) in the image frame. Orientation is defined as the
angle of axis of the least moment of inertia. It is obtained
by minimizing IðθÞ with respect to θ, i.e.

IðθÞ ¼ ∑
ðm;nÞ

∑
AR

½ðPi;y�ycÞ cosθ�ðPi;x�xcÞ sin θ�2 ð5Þ

That gives

θ¼ 1
2
tan �1 2μ1;1

μ2;0�μ0;2

" #
ð6Þ

where

μp;q ¼ ∑
ðm;nÞ

∑
AR

ðPi;x�xcÞpðPi;y�ycÞq

ðPi;x; Pi;yÞ and ðxc; ycÞ are the positions of fingertips and
the centroid of the palm region, respectively. Once θ is
known, we use the following transformations to deter-
mine orientation:

α¼ x cosθþy sinθ
β¼ �x sinθþy cosθ

)
ð7Þ

For the segmented hand region, we can calculate the
orientation and then construct a reference line Rref, as
shown in Fig. 6. The line Rref is the major axis of the ellipse
enclosing the palm of a hand.
OP candidates: (a) updated model, (b) horizontal candidate, (c) vertical
D operation, in which they are retained.
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2.5. Palm and forearm segmentation

The width of the segmented hand region is used to
separate the hand from the forearm. Our proposed method
determines the pair of points where the orientation vector
intersects with the rectangle boundary of the segmented
skin colored hand region. Hand orientation is defined as the
angle of the axis of least moment of inertia. The orientation
is estimated by using the boundary points and the centroid
with respect to the image frame. The two intersection points
of the orientation vector with the bounding rectangle are
determined. The midpoints of the lines connecting the
centroid and each intersection point are computed and
joined. Assuming that the wrist position lies within these
two points, we can find out the width of the hand region in
the perpendicular direction of the line joining the midpoints.
The forearm can be detected and separated by locating the
wrist part, which can be recognized as two parallel lines
Fig. 6. Forearm se

Fig. 7. (i) A normal stretched hand with fingers na
originating at the object boundary that expand into the
shape of a hand. As shown in Fig. 6, the position where the
width of the hand region changes most along the perpendi-
cular direction of the constructed line determines the
boundary between the hand and the forearm.

2.6. Hand modeling

The kinematic and dynamic constraints of the hand are
applied to model the hand mathematically:
�

gme

me
The rotation of the proximal joints of hand is respon-
sible for the movement of a particular segment of the
hand, which can be specified by the joint's rotation
angles. As shown in Fig. 7, a local coordinate system can
be defined on joint positions, and any joint rotation can
be modeled as a sequence of rotations on the three axes
of the local coordinate system.
ntation.

d as T, I, M, R, L and (ii) hand modeling.
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�
 Only the adduction and the abduction of the metacarpo-
phalangeal (MP) joints are considered for modeling. The
MP joint of finger III displays limited adduction and
abduction.
�
 The hand remains perpendicular to the optical axis of
the camera so that the line joining centroid and
fingertip of middle finger lies parallel to the Y-axis.
Also, the axes of abduction and adduction motions are
referenced along the Y-axis.
�
 The thumb is modeled separately by assuming that the
line joining the MP joint of the thumb with the thumb
fingertip is straight, and it has only abduction and adduc-
tion movement about the Z-axis. The total abduction and
adduction angle movement for thumb is taken as 301.
�
 The abduction or the adduction angle between the
adjacent fingers from II to V for static constraints are
taken as

�151rQz
MP;sr151 ð8Þ

where Z gives the axis of rotation of the adduction or
abduction movement in the local joint centered coordinate
system. Here, s denotes the indices of fingers from II to V.
�
 The flexion angle between the adjacent fingers from II
to V for dynamic constraints are taken as θy

PIP ¼ 3
2θ

y
DIP

and θy
MCP ¼ 1

2θ
y
PIP where Y gives the axis of rotation of

the flexions/extensions in the local joint centered
coordinate system [1,2].
�
 Only the flexions/extensions of the proximal interpha-
langeal (PIP) and distal interphalangeal (DIP) joints are
considered for modeling. The range for PIP and DIP
joints is given by the following equation:

451oθy
PIPo751 ð9Þ
2.7. Extraction of geometric features/calibration

The proposed algorithm for extracting key geometric
features of a hand is summarized as follows:

Step 1: Show the five fingers in front of the camera
such that the plane of the hand remains perpendicular to
Fig. 8. Hand model showing angle of rotation of fingers. The circles
the optical axis of camera. As shown in Fig. 8, compute the
distances of the boundary points of the hand from the
centroid ðxc; ycÞ in a cyclic manner and store them in an
array r(t), where t is indices of pixels while traversing the
contour. Smooth the data in r(t) using B-spline interpola-
tion and compute the local maxima. Sort the values of the
maxima and store the top five elements of the sorted array
as r14r24r34r44r5 and their indices in r(t) as t14t2
4t34t44t5. Horizontal lines in Fig. 8 actually show the
process of finding different peaks of the curve to deter-
mine the corresponding fingertips.

Step 2: Select rA; rB; rC ; rD and rE such that r1orAor2; r2
orBor3; r3orCor4; r4orDor5; r5orEor5�δ; where δ
is a safety margin, which is set as δ¼ r5=3. Compute six
sets of points by finding six sets of solutions of the
equations rðtÞ ¼ rA, rðtÞ ¼ rB, rðtÞ ¼ rC , rðtÞ ¼ rD, rðtÞ ¼ rE
and rðtÞ ¼ r5�δ. Let us consider the solution sets to be
S1; S2; S3; S4; S5 and S6. The following algorithm is then
implemented to determine the finger tips.

Algorithm 1. Proposed algorithm for fingertip detection.
dr
for i¼1 to 6 do
Consider si;j as the jth element of set Si;i ¼ 1:6

Ni is the total no of elements in Si
for j¼ 1 to Ni do
index¼ argðminðjsi;j�tpjÞÞ

p ¼ 1:5
; indexAf1;…;5g

Include si;j in set Pindex

������
end
for k¼ 1 to 5 do
if number of elements in Pk ¼ 1 and Pk ¼ fpk;1g then
Include spatial coordinates corresponding to pk;1 in set Mk

ELSEIF number of elements in Pk ¼ 2 and Pk ¼ fpk;1; pk;2g
Include midpoint of spatial coordinates corresponding to
pk;1 ;pk;2 in set Mk

ELSE DO NOTHING

������������
end

�����������������
end
CLEAR Pindex;index ¼ 1:5

�����������������������������������������

end
awn about the centroid with radii r1; r2; r3 ; r4 and r5ðrminÞ.
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Step 3: Construct five axes by joining elements of each
of the sets Mk;k ¼ 1:5. Now for recognizing the type of
fingers in the hand, if the left hand is shown for calibra-
tion, classify the peaks from left to right with respect to
the reference axis Rref as T (thumb or finger I), I (index or
finger II), M (middle or finger III ), R (ring or finger IV) and
L (little or finger V). The reverse procedure is applicable for
the right hand. For each of the fingers, the intersection of
the axis with the hand contour and eroded hand mask will
give the actual positions of fingertips PT ; PI ; PM ; PR; PL

and positions of MP joints R1; R2; R3; R4; R5, respectively.
The extracted finger tips are shown in Fig. 9(a).
2.8. Hand pose recognition for abduction and adduction
finger movements

In our method, the change of abduction/adduction
angles are modeled as Gaussian distributions which can
a b

Fig. 9. (a) Results of proposed algorithm for fingertip detection

Table 1
Range of abduction and adduction angle for different classes of gestures.

Gestures considered Range of abduction and adduction ang
(mean angle is shown in brackets)

T I

TI θ to θþ30 �15 to 15
ðθþ15Þ (0)

IM �15 to 0
(�7.5)

IL �15 to 15
(0)

TIM θ to θþ30 �15 to 0
ðθþ15Þ (�7.5)

IMR �15 to 0
(�7.5)

TIL θ to θþ30 �15 to 15
ðθþ15Þ (0)

TIML θ to θþ30 �15 to 0
ðθþ15Þ (�7.5)

IMRL �15 to 0
(�7.5)
take care of the intra-class variability. For a normal hand
gesture showing all the five fingers for calibration, we can
select 10 pairs of finger combinations. Subsequently, three
key features for each pair of fingers are computed based on
the information of relative distance and relative angle
generated by fingertips and MP joint positions. The three
features proposed in our method are di;j;βi;j and αi;j, which
are shown for the case of I and M finger pair in Fig. 9(b).
Due to the flexion movements of fingers, the distance
profile of the hand region cannot provide accurate infor-
mation of the position of the tips. For this, the approximate
position of the PIP joints is used to extract the features by
considering the static constraint of the fingers.

Here (i,j) denotes the indices of pair of fingers, where
the indices for thumb, index, middle, ring, and little fingers
are 1, 2, 3, 4, and 5 respectively. Thus, spatial information
of each pair of finger can be mapped to a relative
3D feature space F1F2F3. In our proposed algorithm for
finger type recognition, we consider eight hand gestures
d

T

MI
R

L

( xc , yc )

and (b) features di;j ; βi;j and αi;j proposed in our method.

les in degrees

M R L

0 to 15
(7.5)

�15 to 15
(0)

0 to 15
(7.5)

0 0 to 15
(0) (7.5)

�15 to 15
(0)

0 to 15 �15 to 15
(7.5) (0)

0 0 to 15 �15 to 15
(0) (7.5) (0)
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performed by two, three, and four fingers. The valid
gestures considered in our experiment are given in
Table 1. If M0 denotes the total number of finger pairs
possible for a particular gesture, a particular gesture can be
mapped to M0 distinct points in F1F2F3 space. Thus, eight
selected patterns can be mapped to F1F2F3 space into eight
sets Di;i ¼ 1:8. The gesture patterns well separated in F1F2F3
space and also easy to gesticulate are considered in the
experiment. For unique orientation of the finger axis of
thumb, the gestures incorporating the thumb are analyzed
separately. The reference axis for the thumb is defined as
the line joining the centroid and the estimated MP joint of
the finger. For other fingers, the reference axis is the line
parallel to the middle finger axis and passing through the
MP joint of the respective fingers. For gestures with a
single finger, template matching can be performed for
finger type detection.

2.8.1. Modeling of feature distribution
Table 1 shows approximate variations of the abduction

and the adduction angle of each finger in different gesture
classes. We propose two models for analyzing possible
variations of the features d, β, and α in a pair of fingers.
Model 1 includes all pairs of fingers including the thumb,
and Model 2 includes all pairs of fingers without
the thumb.

The proposed Model 1 and Model 2 are shown in
Fig. 10. The notations used in the figures are summarized
below:
�

Fig
refe
di;j: d-feature of the ith and jth fingers.

�

Table 2
β1;i;j: β1-feature of the ith and jth fingers.

Computation of features.
�
 β2;i;j: β2-feature of the ith and jth fingers.
�
 Li: length of ith finger.

Features Equations
�
 Cij: distance between MP joints of ith and jth fingers.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
�

d di;j ¼ A2

c þL2j �2LjAc � Y

β
βi;j ¼ 901þθ1þ cos �1

l2j þC2
i;j� l2i

2ljCi;j

 !

α
αi;j ¼ sin �1 Ac

di;j
cos θ1� sin �1 Li cos ðθ2Þ

Ac

� �� �� �
li: distance of MP joint of ith finger from the centroid.

Fingers indexed with 1–5 represent thumb, index,
middle, ring and little finger. The green arrows in Fig. 10
indicate the possible range of abduction and adduction
angles for a particular finger. Here θ is the offset angle of
L1 Lj

1

C1,j

d1,j

1,j

l1 l j

300

150

( xc , yc )

1,j

. 10. Proposed Model 1 and Model 2 for modeling abduction and adducti
rences to color in this figure caption, the reader is referred to the web vers
the thumb during the calibration from the reference axis
of the thumb. Again, θ1 and θ2 are abduction and adduc-
tion angles for a particular pair of fingers in a gesture. The
features are computed from the two models by using
Euclidean geometry as shown in Table 2.

where

Ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2i þCi;jþ2LiCi;j sin ðθ2Þ

q

and

Y ¼ cos 901þθ2� sin �1 Li sin ðθ2Þ
Ac

� �� �

In our method, we only consider eight gesture classes
defined as Gj;j ¼ 1:8. So, Dk;k ¼ 1:8 are the sets of points in
F1F2F3 space for the gesture classes Gj;j ¼ 1:8. For every
gesture class with N fingertips, there will be M0 ¼ N

2

� �
points in F1F2F3 space. Due to spatial variations of the
abduction and adduction angles, we model each of the
three features as a Gaussian distribution for every points in
F1F2F3 space for a particular gesture.

Let us consider that the average values or the mean of the
distributions of the three features are davg, βavg, and αavg.
These values are computed by using the mean angles of θ1
and θ2, which are obtained by using Table 1 and the
equations given in Table 2. The maximum possible ranges
of three features are computed by putting the ranges of θ1
and θ2. The ranges obtained for each of the features are
denoted asΔd,Δβ andΔα, which will be subsequently used
for computing the variances of the feature distributions.
L i  L

d i,j

12

C i,j

150

ljli

i , j

150

i , j

( xc , yc )

on movements of finger about the MP joint. (For interpretation of the
ion of this paper.)



Fig. 11. Block diagram of the proposed scheme.
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Next, a normal distribution is defined for each of the
three features from the information obtained from the
geometric features and feature variations model. For each
of the three features d, β and α, which are denoted as F1,
F2, and F3, we can define a normal distribution as

f Fið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðΔFiÞ2

q e�ðFi � Fi;avg Þ2=2ðΔFiÞ2

�������
iA f1;2;3g

ð10Þ

We determine all the sets Dk;j for eight valid gesture
classes during the calibration, where Dk;j represents jth
cluster of kth gesture in F1F2F3 space. The set can be
expressed as follows:

Dk ¼ ff ðdk;jÞ � f ðβ1;k;jÞ � f ðβ2;k;jÞgj ¼ 1:M0

���
kA f1;2;3;…;8g

ð11Þ

where M0 denotes the total number of distributions in set
Dk as defined before.

2.8.2. Gesture classification
Let f in be the vector consisting of the fingertip positions

and MP joint positions of the input gesture. As discussed in
Section 2.7, a contour distance profile is generated by
computing the distance of the hand contour from the
centroid in a cyclic manner. The distance profile is
interpolated using B-splines. All the small unwanted peaks
in the palm boundary with value less than rmin�δ are
excluded from further consideration. As described earlier
in the fingertip detection algorithm, we perform morpho-
logical operations to find out a more accurate position of
the fingertips. The input gesture pattern f in is then
transformed to Din in the F1F2F3 space. Next, a proximity
measure is used to find the proximity of Din from the pre-
modeled gesture pattern distributions Dpre. A pre-modeled
gesture pattern contains the same number of fingertips as
the input gesture pattern. Mahalanobis distance is used for
computing the proximity between Din and all the relevant
Dpre. The elements of Din and the distributions of Dpre

should be in the same order during the measurement of
proximity between Din and Dpre. Subsequently, the corre-
sponding gesture pattern is recognized on the basis of
minimum distance criteria. All the important steps of our
proposed gesture recognition scheme for abduction finger
motions are shown in Fig. 11.

2.9. Extension of the proposed method for two-handed pose
recognition

The hands are first separated from the face and,
subsequently, the binary alpha planes corresponding to



Fig. 12. Face elimination and hand localization.
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two gesturing hands are extracted on the basis of spatial
information of the hand. In this method, a learning-based
approach and the adaboost algorithm are used for the
detection of the face. In this, Haar-like features are used for
recognition of the frontal face region from the background
and subsequently, two hands can be labeled separately by
connected component labeling [18]. Fig. 12 shows the
outputs of the face elimination and hand localization
process.

Two-handed gestures are treated as a composition of
two independent one-handed gestures. For two-handed
fingertips detection, key geometric features of each of the
hands (i.e., hand model) are obtained after calibrating the
hands. The same calibration technique as discussed above
is applied to recognize the fingertip positions of both
hands. Each of the ten fingers is placed in front of the
camera one by one for calibration. Both hands remain
perpendicular to the camera so that the line joining the
centroid and the fingertip of the middle finger lies parallel
to the Y-axis. The positions of the fingertips are then
identified based on the positions of the reference lines of
the localized hand regions. If the left hand is shown for
calibration, the peaks are classified from the left to right
with respect to the reference axis Rref as T (thumb or finger
I), I (index or finger II), M (middle or finger III ), R (ring or
finger IV) and L (little or finger V). The reverse procedure
applies for the right hand. As the two hands are already
localized, the proposed algorithm is used on both hand
regions separately to find the fingertips of each gesturing
hand. The overall gesture is then recognized based on the
information from each hand.
3. Proposed hand pose recognition scheme for flexion
finger movements

As explained earlier, it is quite difficult to estimate the
flexion angles from the 2D image as it involves the estima-
tion of finger motion along the optical axis of the camera.
One possible solution is the 3D modeling of the fingers to
estimate all the finger movements. But model-based meth-
ods are computationally complex. So we propose a novel
scheme to determine the flexion angle variations by analyz-
ing the texture of the projected region of the fingers in the
2D image plane. So, instead of modeling the flexion angles,
we use the texture features for differentiating two gestures
which are different in terms of the flexion angles of the
fingers. It is experimentally found that the texture features
can roughly give an estimation of the finger motions along
the direction of the camera. It is therefore justified to
perform texture analysis in lieu of 3D modeling of the finger
joints of the hand to extract the flexion and extension
information inherent in the gestures. The method is simple
and straightforward.

In our method, texture-based features are extracted
from the texture analysis of the circular strips of the
segmented hand image. The main motivation behind the
proposed texture descriptors in the circular strips is that
the specific patterns of texture can be extracted corre-
sponding to the different flexion finger movements. These
texture patterns indirectly give the information of flexion
finger movements.

3.1. Proposed flexion features extraction

An important step towards the extraction of the pro-
posed features is to find the textured region which can
cover only the flexion finger movements. The texture
analysis is performed using texture browsing
descriptors (TBR).

The center of mass of the palm region is first computed
as mentioned in Section 2.7. Now from the information of
the calibrated hand, we estimate the relative positions of
the MP joints of the fingers. The orientation of the hand is
pre-computed using the approach explained in Section 2.4.
For the extraction of flexion features, a textured region is
chosen with a range of �1201 to 1201 from the reference
line of the hand region. Subsequently, a circular region of
radius equal to the distance between the center of mass
of palm region and the highest peak of the distance profile
of the hand contour is constructed. Starting from the peak
value (Rmax=5), circular strips of width 5Rmax=27 are taken
with decreasing radius for extracting the circular textured
region. Three circular strips are taken to cover the total
range of flexion movement of the fingers.

As shown in Fig. 13, the color region inside the circular
strips are used to analyze the texture. Also, as illustrated in
Fig. 14, a bounding box is constructed along the segmented
portion of each circular strip to find the texture-based
features. Fig. 15 shows the extracted textured region of
the hand.

For extracting feature vectors from the specified tex-
tured region, a homogeneous texture descriptor (HTD) is
used. The HTD characterizes the textured region using



Fig. 13. Figure showing circular strips of texture. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 14. Bounding box of the portion of the textures of the hand.

Fig. 15. Portions of the texture of the hand.

Fig. 16. Channels used for computing HTD.
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the mean energy and energy deviation from the set of
frequency channels [19]. The 2D frequency plane is parti-
tioned into 30 channels as shown in Fig. 16. The mean
energy and its deviation are computed in each of these 30
frequency channels in the frequency domain.

The syntax of HTD is as follows:

HTD¼ ½f DC ; f SD; e1; e2;…; e30;d1;d2;…; d30� ð12Þ
In this, f DC and fSD are the mean and the standard
deviation of the image respectively, and ei and di are the
nonlinearly scaled and quantized mean energy and energy
deviation of the corresponding ith channel, as shown in
Fig. 17.

The individual channels in Fig. 17 are modeled using
Gabor functions. A channel indexed by (s,r) is considered,
where s is the radial index and r is the angular index.
Then the ðs; rÞth channel is modeled in the frequency



Fig. 17. Homogeneous texture descriptors of three channels.
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domain as

Gs;r ω;θ
� �¼ exp

�ðω�ωsÞ2
2σ2

s

 !
� exp �ðθ�θrÞ2

2τ2r

 !
ithP ω;θ

� �
ð13Þ

On the basis of the frequency layout and the Gabor
functions, the energy ei of the ith feature channel is
defined as the log-scaled sum of the square of the Gabor
filtered Fourier transform coefficients of an image

ei ¼ log10½1þpi� ð14Þ
where

pi ¼
X1

ω ¼ 0þ

X3600

θ ¼ ð00Þ þ
½Gs;rðω;θÞjωjPðω;θÞ�2 ð15Þ

and Pðω;θÞ is the Fourier transform of an image repre-
sented in the polar frequency domain, that is
Pðω;θÞ ¼ Fðω cosθ;ω sinθÞ, where Fðu; vÞ is a Fourier trans-
form in the Cartesian coordinate system. The energy
deviation di of the future channel is defined as the log-
scaled standard deviation of the square of the Gabor
filtered Fourier transform coefficients of an image [20]

di ¼ log10½1þqi� ð16Þ
where

qi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
ω ¼ 0þ

X3600

θ ¼ ð00Þ þ
f½Gs;rðω;θÞjωjPðω;θÞ�2�pig

2

vuuut ð17Þ

The above operations can be efficiently performed using
the Radon transform. The Radon transform is defined as
the integral along the line that has an angle θ counter-
clockwise from the y-axis and at a distance R from the
origin [17]. It can be written as

pθðRÞ ¼
Z
LðR;θÞ

f ðx; yÞ dl

¼
Z 1

�1

Z 1

�1
f ðx; yÞδðx cosθþy sinθ�RÞ dx dy ð18Þ

Thus, we generate three sets of HTD vectors (each contain-
ing 62 feature elements) as a representation of texture
variations due to the flexion and extension movements of
the fingers.
3.2. Gesture recognition by proximity measure

From several experiments, we observe that the hand
poses due to the variations in flexion angles of the fingers
can be differentiated from the analysis of the textures of
the fingers. Texture patterns of the fingers change with the
variations of flexion angles. For our experiments, a data-
base of texture variations corresponding to different finger
movements is collected from a number of signers. Subse-
quently, the texture feature HTD of the gestures under
consideration are calculated and stored in the database.

To measure the similarity between an input gesture
and the gestures in the database, a distance measure is
proposed. This distance measure can simultaneously han-
dle variations in abduction and flexion angles. Given an
input hand image, we generate homogeneous texture
descriptor features Ti;q ði¼ 1;2;…;186Þ as mentioned in
the previous section and search for their nearest neighbor
in the database of mean Mi;d ði¼ 1;2;…;186Þ for the
kth ðk¼ 1;2;…;6Þ hand pose. As mentioned in Section
2.8, SA

q
and SA

d
are the input adduction/abduction features

of the input image and the database gesture. The exact
matching score θðq; dÞ between the input image, q and
pose d is defined as

θ q; dð Þ ¼ β
dMðSqA; SdAÞ

þ ð1�βÞ
dMðTi;q;Mi;dÞ

�����
d ¼ 1;2;…;8

ð19Þ

where β is a normalized weighting factor which is deter-
mined experimentally as 0.6. The pose d in the database
for which θðq; dÞ is maximum is the recognized gesture.

4. Experimental results

To validate the proposed technique, several hand poses
with important variations of the hand configurations were
considered. We judiciously selected the hand poses so that
they could be used as pointing gestures for HCI interfaces.
The proposed system was tested in real-time on an Intels

Core I3-based personal computer. The input images are
captured by a CCD camera at a resolution of 640�480
pixels. Our dataset is a challenging real-life dataset col-
lected in cluttered backgrounds. Besides, for each gesture,
the subject poses with variations in abduction/adduction
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and/or flexion angles. Moreover, all the experiments are
performed with nearly constant uniform illumination. Our
Cþþ implementation processes each frame in 78 ms. GPU
acceleration is not used.

In our gesture recognition system, the user is constrained
to the following four phases for making a gesture. These
steps are required to read the hand poses from the video.
1.
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Insert the hand after some time within the capture
range of the camera so that the background image can
be read. We use a 640�480 image for this purpose.
2.
 Keep hand still (fixed) in start position until gesture
motion begins.
3.
 Move fingers and hand smoothly and slowly to the
most prominent gesture positions.
4.
Fig. 19. Selected gestures.
Complete the gesture by keeping the fingers and hand
in the final gesture position for a relatively longer
period of time.

Our hand gesture recognition system is robust to clut-
tered backgrounds, because the hand is detected using shape
information; thus, the backgrounds can be easily removed.
The proposed system has inherent advantages over skin
color-based hand gesture recognition approaches.

For fingertips and finger types recognition of single
hand, our dataset is collected from 20 subjects, and it
contains eight gestures. Each subject performs 10 different
poses for the same gesture. Thus in total, our dataset has
20 signers�8 gestures/person�10 cases/gesture¼1600
cases. Fig. 18 shows the results of finger tips detection
and finger type recognition. Some additional results of our
proposed finger tips detection algorithm are shown in
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Fig. 18. Results of finger tip detectio
Fig. 20 for the input hand poses shown in Fig. 19. Fig. 21
shows the results of hand pose recognition by detecting
the finger tips. The recognition rate of the different hand
poses, shown in Fig. 19, is about 99%.

To validate the performance of the proposed algorithm
for two-handed pose recognition, we take 10 gestures
showing fingertip combinations of the two gesturing hands.
The proposed algorithm is evaluated by 20 signers and each
signer performs three times a predefined set of 10 gestures.
Therefore, a total of 600 gestures are used to evaluate the
performance of the proposed system. Some of the results of
two-handed fingertip detection and two-handed pose recog-
nition are shown in Figs. 22 and 23, respectively.
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n and finger type recognition.
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Finally, Fig. 24 shows the gestures used to evaluate the
proposed algorithm for recognizing different hand poses
based on the flexion angle of the fingers. In this figure, the
first row shows hand poses with straight fingers. The second
row shows hand poses with the bent fingers. For our
experimentation, 400 training gestures are processed under
normal illumination. During the training session, eight mean
HTD vectors are calculated for each of the hand gestures
under consideration. Next, the proposed system is tested by
10 signers, and each signer performs a predefined set of eight
gestures five times each. In this case, the recognition rate was
almost 97%. These results show the efficacy of our method to
handle both abduction and flexion movement of the fingers.
Fig. 21. Hand pose recognition by detecting the fingertips.

Fig. 20. Fingertips detection.

Fig. 22. Detected two-h
The real-time recognition videos are also uploaded to show
the efficacy of the proposed method.

We compared our proposed method with two other
existing methods as mentioned in [10,13]. For compari-
sons, we used our database in which 20 signers created it
under normal illumination conditions. Each signer per-
forms three times a predefined set of 10 gestures. There-
fore, a total of 200 gestures are used for training and the
remaining 400 gestures are used to evaluate the perfor-
mance of the existing methods and the proposed system.
Our proposed algorithm also offers improved recognition
rates as compared to these two existing methods. The
experimental results indicate the feasibility of the pro-
posed algorithm for vision-based interfaces.

5. Conclusion

Static hand gesture recognition is a highly challenging
task due to many degrees of freedom of the hand's kinematic
structure. In this paper, we proposed a novel hand pose
recognition method to support vision-based interfaces.

In our proposed method, MPEG-4 based video object
extraction is used for finding different hand positions and
shapes from the gesture video sequence. The VOP based
method of segmentation does not require the rotation and
scaling of the object to be segmented. The shape change is
represented explicitly by a sequence of 2D models, one
corresponding to each image frame. Incorporation of median
filtering in the model formation stage greatly enhances
tracking performance. Moreover, introduction of logical
AND operation in the final VOP generation step preserves
the fingers. The proposed hand segmentation algorithm
overcomes the limitations of skin color-based segmentation.

Additionally, our method can recognize hand poses
having both abduction/adduction and flexion movements
of fingers in a single camera-based setup. In contrast to
prior work on hand pose recognition by a stereo camera or
by a depth sensor, the proposed method can efficiently
recognize different hand poses by using only a single
camera. In contrast with previous gesture recognition
methods, the proposed method does not need 3D model
reconstruction.

Furthermore, the incorporation of a hand calibration
step in the proposed algorithm makes the system more
robust against size inconsistency between the model
and the user's hand. The probabilistic modeling of the
anded fingertips.



Fig. 24. Hand poses (IMR1, TIM1, IM1, IMRL1, IMR2, TIM2, IM2, and IMRL2) created by flexion and extension movements of the fingers considered for recognition.

Fig. 23. Results of two-handed pose recognition.
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abduction/adduction variations is performed to tackle the
intra-class variation of gestures. The texture analysis using
HTD has also improved the ability of the system to
recognize interclass variability due to flexion movements
of the fingers. Promising experimental results demonstrate
the potential of our approach.

The geometrical features of the hand extracted during
the calibration can also provide valuable information for
applications related to finger spelling recognition for sign
language recognition and hand gesture animation. The
high recognition rate has shown the effectiveness of our
algorithm over existing methods like silhouette matching-
based pose recognition and 3D model-based hand pose
recognition.
Appendix A. Supplementary data

Supplementary data associated with this paper can be
found in the online version at http://dx.doi.org/10.1016/j.
jvlc.2014.12.001.
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