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Abstract
Many vision-based human-computer interaction (HCI) applications require skin detection.
However, their performance relies on accuracy in detecting skin regions in video, which
is difficult under uncontrolled illumination. The chromatic appearance of skin changes
because of shading, often caused by body movement. To address this, we propose a dynamic
adaptation method to detect skin regions affected by local color deformations. Static and
dynamic skin regions are detected by a corresponding module. The static module includes
a facial skin distribution model (FSDM) and a fusion-based background distribution model
(FBDM). The FBDM is obtained from a local background distribution model (LBDM) and
a global background distribution model (GBDM). The LBDM is obtained by comparing
a frame pixel distribution model with the FSDM and GBDM. Next, the FBDM is derived
from the LBDM and the GBDM. The dynamic module includes a moving skin distribu-
tion model (MSDM), derived from a set of moving skin samples. Initially, moving skin
regions are detected using a modified double frame-difference method and then modeled
using a Gaussian mixture model. To avoid misidentifying background regions as skin, the
final MSDM is obtained by comparing the initial moving skin model to the FSDM and
FBDM. Finally, the static and the dynamic models are fused by applying a maximization
rule. Experimental results shows that the proposed method can detect skin regions more
accurately than state-of-the-art methods.
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1 Introduction
Skin detection is an important step in many human-computer interaction (HCI) applications
like facial expression recognition [32], facial feature point detection [9], gesture recogni-
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tion [24, 25, 31, 39], real-time heart rate monitoring [10, 36], forensics [26], and medical
diagnosis [11, 28]. Chyad et al. [8] conducted an extensive review and analysis of different
methods for skin detection. According to Chyad et al., accuracy of skin detection depends
on multiple factors such as variations in skin pigmentation among different races, scene
illumination, shadows, presence of skin-like colors in the background, and camera char-
acteristics. A major challenge is the effect of varying illumination on apparent skin color.
Illumination can vary globally or locally. A global variation occurs when the characteristics
of the illuminating source vary with time. However, a local illumination variation occurs
when illumination becomes non-uniform over the exposed skin regions. A frequent cause
of non-uniform illumination is the curvature of the skin surface, which results in form shad-
ows. In addition, a body part occluding the illumination of another body part results in
cast shadows. For directional light sources, the extent of illumination on a skin patch also
depends on its orientation with respect to the light source. In most HCI applications, local
illumination variations occur more frequent than global illumination variations. Applica-
tions such as human-robot interaction [21], medical systems and assistive technology [16],
and gesture-controlled computer games [38] are some of the real-life examples where both
the background and the scene illuminant are almost static.

In recent years, much research [3, 5, 6, 8, 14, 20, 22] has been reported on skin detection
in images under unconstrained environments. However, research has seldom addressed skin
detection in video under varying illumination conditions. Soriano et al. [35] investigated
the effect of static but non-uniform illumination on skin color: A skin locus is introduced
to describe a chromatic constraint on skin color appearance. However, derivation of a skin
locus requires a calibrated camera and the face must be captured for different illuminants.
Also, the skin locus is camera specific and, hence, must be recalculated for every unknown
video. For varying illumination conditions, Sigal et al. [34] proposed a second-order Markov
model with dynamic histogram adaptation. Their method assumes illumination changes
gradually and globally. This approach is not suitable for local illumination changes because
of their unpredictability. Habili et al. [12] used motion and color information to detect
skin regions in video. However, their method assumes the background contains no skin-
colored regions. Awad et al. [2] make the same assumption in proposing a fusion-based
model. However, they further assume uniform illumination of skin regions. Therefore, under
unconstrained illumination and background conditions, the skin pixels cannot be located
accurately. Also, their method requires a set of labeled initial frames to train a support vector
machine (SVM) classifier and determine the initial positions of skin-colored objects. Han
et al. [13] proposed a skin segmentation and tracking algorithm for sign language recog-
nition by using SVM active learning. The SVM is trained with a set of initial frames.
However, its major drawback is an inability to handle varying illumination. In addition, the
SVM must be relearned at every frame, which is computationally expensive. Liu et al. [23]
proposed a face detection-based model update scheme for varying illumination. However,
only variations in global illumination were considered. The method is not suitable for local
illumination changes, which occur mainly because of moving body parts.

In recent years, deep learning-based object classification methods became a new trend
due to their higher accuracies as compared with classical methods. In [22], Lei et al.
used stacked autoencoders for skin detection under different illumination conditions. Zuo
et al. [40] showed that skin color segmentation can be treated as a semantic segmenta-
tion problem. Here, layers of recurrent neural networks (RNNs) are integrated into a fully
convolutional neural network (FCN) module. This improves skin segmentation by using
spatial correlation among skin pixels through RNN blocks. However, identification of color
whether it belongs to the skin or non-skin region is image-specific. Therefore, the accuracy
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of a skin detector, even though it uses deep networks, is limited by the skin and non-skin
region statistics provided by the training data. Dynamic illumination change is a tempo-
ral phenomenon in a video and it can be modeled using Markov models [34] if it follows
some pattern. Presently, LSTM-RNNs are widely used for temporal sequence predictions
such as activity recognition [4, 30], gesture recognition [1], etc. However, using RNNs to
model temporal variation of local illumination may be difficult due to the excessive ran-
domness associated with the change in the illumination pattern. Also, the training of deep
networks requires a large training dataset, which is not available for the the problem to be
addressed. However, the presented algorithm does not require a large training dataset, and
its skin detection model updates itself by using moving skin samples.

A survey of the literature reveals a need to explore further the effects of local color and
shading deformation of skin regions in video. To detect these regions, we propose a dynamic
adaption scheme, which employs a Bayes classifier. It has two modules: a static module
for the detection of static skin regions and a dynamic module for the detection of moving
skin regions. The static module has two components: a skin distribution model (SDM) and
a background distribution model (BDM). The skin distribution model, termed facial skin
distribution model (FSDM), is derived from a set of facial skin samples of initial frames
of a video. The background distribution model must adapt to the background character-
istics of the video. To obtain it, a global background distribution model (GBDM) is first
created from a set of randomly collected background samples. However, skin colors could
be present in the background of a video frame. Therefore, a local background distribution
model (LBDM) needs to be derived for the video frame. To obtain the LBDM, we follow a
similarity match-based algorithm by using pixel distribution information [6]. The similarity
between two distribution functions can be measured by using the Bhattacharyya distance
[7]. The local deformations in skin color may create multiple modes in the skin distribu-
tion. The Bhattacharyya distance treats these modes as different distribution functions and
produces finite distances accordingly. Therefore, a new distance metric is needed to discrim-
inate the distribution functions belonging to similar regions of an image (e.g., skin regions)
from those belonging to dissimilar regions (e.g., background regions).

In this paper, we propose to modify the Bhattacharyya distance to reduce the distance
between two distribution functions if they belong to the same skin region. The LBDM is
derived from the FSDM and the GBDM using the modified Bhattacharyya distance (MBD)
as a metric. The final background model, termed as fusion-based background distribution
model (FBDM), is obtained by fusing the LBDM and the GBDM. The main component
of the dynamic model is a moving skin distribution model (MSDM). The MSDM reflects
the distribution of pixels belonging to moving skin regions having chromatic deformations.
The regions are detected by using a modified double frame-difference method. An initial
distribution model for these moving skin regions is obtained by using a GMM. In addition
to the skin regions, some background regions can be falsely detected as skin regions during
the moving object detection process. The final MSDM is obtained by performing a filter-
ing procedure based on similarities of the initial moving skin model to the FSDM and the
FBDM. Finally, the static and dynamic modules are fused by following a maximization rule.
The proposed method is detailed in the following sections.

2 Proposedmethod

The block diagram of the proposed method is shown in Fig. 1. The proposed skin detec-
tion algorithm has two modules: a static module (FSDM and FBDM) and a dynamic model
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(MSDM). The background distribution model as shown in Fig. 1 is common to both mod-
ules. Each module produces a skin probability map (SPM). The two maps are fused together
to obtain the final skin probability map for a video frame. The proposed skin detection
method is explained in detail in the following sections.

2.1 Static module

The components of the static module are as follows:

2.1.1 Facial skin distribution model

Facial skin tone can be used as a person’s reference skin tone. At first, the Viola and Jones
algorithm [37] is applied over a set of initial frames IT F = I1, I2, ...INT F

to locate faces
in the frames. Here, NT F is the number of initial training frames. A set of sample pixels is
obtained from the localized facial regions. The distribution of reference skin pixels extracted
from the facial regions or the FSDM is modeled as a single multivariate Gaussian function
Gf :

Gf = N
(
μf ,�f

)
(1)

2.1.2 Background distribution model

The proposed fusion-based background distribution model has two components: a global
background distribution model (GBDM) and a local background distribution model
(LBDM). To obtain the GBDM, a set of sample background pixels obtained from a standard
dataset is used. The global background model is expressed as

Ggb =
Kgb∑
k=1

ω
gb
k N

(
μ

gb
k ,Σ

gb
k

)
(2)

Fig. 1 Block diagram of the proposed method
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To obtain the LBDM, a local distribution model adaptation scheme [6] is followed. At
first, a pixel distribution model GI for pixels of a set of initial frames IT F is derived from a
Gaussian mixture model (GMM). The expression for GI is given as

GI =
KI∑
k=1

ωI
kN

(
μI

k,�
I
k

)
(3)

The number of Gaussian components Kgb and KI are selected by using the method given
in [6].

The model GI gives a color distribution of frame pixels, which includes both skin and
non-skin pixels. The Gaussian components of GI , reducing to the real skin regions, should
be statistically more similar to the FSDM, and they should be more dissimilar to the Gaus-
sian components of the GBDM. Now, the Bhattacharyya distance is a well-known metric to
find distance between two probability distribution functions. The closed form expression for
Bhattacharyya distance between two multivariate Gaussian distribution functions is given
by

dBh

(
Gi,Gj

) = 1
8

(
μi − μj

)T
[

Σi+Σj

2

]−1 (
μi − μj

)

+ 1
2 ln |(Σi+Σj)/2|√|Σi |·|Σj | , ∀i, j

(4)

and the overlap between Gi and Gj is given by

εi,j = exp
[−dBh

(
Gi,Gj

)] ∀i, j (5)

In this paper, the standard Bhattacharyya distance is termed original Bhattacharyya
distance (OBD).

Now, let us consider two Gaussian clusters of pixels in RGB space: a reference cluster
Cr (μr , �r) and one modified to account for local illumination changes Cl (μl, �l). Here,
illumination change on skin regions can be approximated as translation of a Gaussian dis-
tribution of skin samples along its mean vector. Hence, the intended distance metric should
produce a smaller distance between two Gaussian distributions if one of them is a translated
copy of the other along the mean vector. Also, skin tone distribution of a person should
be independent of illumination changes. Hence, Gaussian distributions derived from skin
samples of different body parts (subjected to local illumination variations) should have co-
variance matrices with the same eigenvectors. Therefore, the distance between Cl and Cr

should be zero as both correspond to similar image regions, contrary to the OBD, which
gives non-zero distance between Cl and Cr . To overcome this problem, the OBD is modi-
fied so that dMBh (Gl,Gr) < dBh (Gl,Gr) for the distribution functions corresponding to
similar image regions. We termed the proposed distance measure dMBh (Gl,Gr) the modi-
fied Bhattacharyya distance (MBD). Local variations of skin colors are approximated as a
combination of two independent parameters: the orientation of the centroid vector μl with
respect to μr and the orientation of Cl with respect to Cr , as shown in Fig. 2. Let φ be the

angle between μl and μr . The two clusters will be perfectly aligned if

[
1 − tr

(
VT

l Vr

)
3

]
= 0,

where Vl and Vr are the eigenvector matrices of �l and �r , respectively. However, the
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Fig. 2 Similarity between two clusters

smaller the value of φ, the more chromatically similar the clusters. Hence, the closed form
of the MBD is expressed as

dMBh

(
Gi,Gj

) = ξ
(
μi − μj

)T
[

Σi+Σj

2

]−1 (
μi − μj

)

+γ ln |(Σi+Σj)/2|√|Σi |·|Σj | , ∀i, j
(6)

where

ξ = 1
8

[
1 − exp

(
− φ

φmax

)]
, γ = 1

2

[
1 − tr

(
VT

i Vj

)
3

]

φ = cos−1
( 〈μi,μj 〉

‖μi‖·‖μj‖
) (7)

Here, φmax is the maximum allowed deviation in centroid orientation. The following rule is
framed on the basis of (6):

dMBh → dBh : (φ � φmax) ∧
{

tr
(
VT

i Vj

)

3

 1

}
≡ true (8)

Figure 3 shows the effect of using the MBD as compared with the OBD. Three patches
are extracted from an image: Patch1, Patch2, and Patch3 (Fig. 3a). Patch1 and Patch3
belong to skin regions, whereas Patch2 belongs to a non-skin region. We consider Patch1
has the true skin tone and Patch3 has a deformed skin tone due to local illumination varia-
tion. Figure 3b shows the distribution of pixels belonging to these patches in RGB space. In
Fig. 3c, distance ratios calculated with the OBD and MBD are shown for these patches. The
analysis shows that the relative distance between an unknown and reference skin distribution
is less for the MBD than the OBD.
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Fig. 3 Effect of using the MBD as a distance measure: a the original image with three patches extracted
from different regions; b distribution of pixels in RGB space for each patch; the red, green, and blue cluster
correspond to Patch1, Patch2, and Patch3, respectively; and c distance ratios for different patches

The overlap between Gaussian components of GI and FSDM is then given by

ε
f
i = exp

[
−dMBh

(
GI

i , G
f
)]

for i = 1, ...KI (9)

and the overlap between Gaussian components of GI and Ggb is given by

ε
gb
i = exp

[
− min∀j

dMBh

(
GI

i ,G
gb
j

)]
for j = 1, ...Kgb (10)

A Gaussian component in GI should belong to the background if it overlaps less with the
FSDM than with the GBDM. Also, background regions may be chromatically similar to the
skin regions in some cases. Therefore, the local background distribution model (LBDM) Glb

should include only those Gaussian components that follow the inclusion criterion defined
below:

GI
i ∈

{
Glb :

(
ε
f
i ≤ ε

gb
i

)
∨

(
ε
f
i ≤ τ1

)
≡ true

}
(11)

The weights of the Gaussian components in Glb are derived from their weights in GI after
normalization. The GBDM exceled at discriminating skin colors from other colors, whereas
the LBDM exceled at discriminating skin colors from those in the background. Hence, a
fusion of GBDM and LBDM should provide better discrimination between skin pixels and
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non-skin pixels than either GBDM or LBDM. Accordingly, the fusion-based background
distribution model (FBDM) Gf b is expressed as

Gf b(X) = max
{
Glb(X),Ggb(X)

}
(12)

where X = [R G B]′ is the color vector of a pixel.

2.2 Dynamic module

As explained earlier, the moving body parts cause local illumination variations in the scene
even if the global illumination is kept constant. This non-uniform illumination may change
the chromatic appearance of moving skin regions in such a manner that they may become
undetectable by the static module. Therefore, the skin model should adapt to local variations
of skin colors due to non-uniform illumination. However, updating a skin model for every
frame is too computationally intensive for real-time applications. Therefore, the skin model
should be updated only during a significant change in scene color due to local illumination
variations. We propose a keyframe detection technique to update the skin model only for
the keyframes.

2.2.1 Keyframe selection

For a given keyframe, the next keyframe to be selected is the one with a significant change
in chromaticity. Thus, an entire video clip is transformed into a small number of represen-
tative keyframes. The chromatic changes between a frame and a reference frame can be
determined from their chromatic entropies. Let It and Iref represent the frame at t and the
reference frame, respectively. The change in chromatic entropy in It with respect to Iref is
given by

ΔEt =
∣∣Et − Eref

∣∣
Eref

(13)

where

Et = −

∑
∀X∈It

nX log
(

nX
w×h

)

w × h
(14)

Et and Eref represent the chromatic entropy of It and Iref , respectively; nX is the number
of occurrence of the color vector X = [RGB]′ in It ; w is the frame width, and h is the
frame height. A frame It is designated as a keyframe Ikey if its ΔEt is greater than some
threshold value θE .

2.2.2 Moving skin distribution model

Assuming the background is static, the frame difference method is the easiest way to detect
moving objects in a frame. However, the frame difference algorithm suffers from two major
limitations: the occurrence of ghost foreground regions and foreground apertures, as shown
in Fig. 4. Ghost foreground regions are caused by the motion of the objects. During frame
differencing, ambiguity may occur between real foreground regions and ghost foreground
regions. The other drawback of frame differencing is foreground object aperture (FOA).
FOA is likely to occur in moving skin regions because of their low texture and intensity
gradient. To avoid the occurrence of ghost foreground regions, Kameda and Michihiko [17]
proposed a double-difference of frame (DDF) method. In this method, three frames at time
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Fig. 4 Drawback of single frame difference method

t − 2, t − 1, and t are selected. The DDF method performs a logical AND operation over
thresholded difference frames between frames at t − 2 and t − 1 and frames at t − 1 and t .
The result of the DDF algorithm in the presence of FOA is shown in Fig. 5. In this, Ot−2,
Ot−1, and Ot show object positions at time t − 2, t − 1, and t , respectively.

The DDF algorithm produces a narrow region for a moving object if the object has a low
texture and/or intensity gradient. Morphological operations can reduce FOA in a difference
frame, as shown in Fig. 6. A dilation along the direction of motion of an object can reduce
FOA with an inclusion of ghost foreground regions. Motivated by this fact, a morphologi-
cal enhancement-based double difference frame method is proposed to detect moving skin
regions. In our proposed method, morphological dilation is applied to each of the thresh-
olded difference frames. Subsequently, a logical OR operation is performed over the dilated
difference frames. The OR operation helps to include more moving skin regions between
the consecutive frames. However, this operation significantly increases the occurrence of
ghost foreground regions. To reduce their inclusion in a thresholded difference frame, dila-
tion should be performed in the direction of motion of the foreground objects, as shown in
Fig. 6. However, for articulated objects like hands, the foreground motion could be com-
plex. We approximate complex movements as a combination of motions in four directions,
0◦, 45◦, 90◦, and 135◦, with respect to the horizontal direction. Directional opening can be
used to select a region in a particular direction. After directional opening, a dilation in the
perpendicular direction of the opening process grows a region in the direction of its motion,

Fig. 5 Results of DDF method in presence of FOA



Multimedia Tools and Applications

as shown in Fig. 7. Finally, a logical OR operation is performed on the two morpholog-
ically enhanced thresholded difference frames to obtain a moving object mask BW

f inal
ΔI .

Figure 8 shows the flowchart of our proposed morphology-based moving object localization
method. An example of the proposed moving skin region localization approach is shown in
Fig. 9.

Ideally Qmotion should only contain pixels belonging to moving skin regions. So, the
pixel set Qmotion can be used to derive a color distribution model for moving skin regions,
i.e., the moving skin distribution model (MSDM). However, some pixels from non-skin
foreground (e.g., clothing) and/or background regions may be included in Qmotion due to the
presence of ghost regions and the proposed morphological region enhancement. Therefore,
a filtering process is necessary to exclude these background pixels to derive the MSDM. To
obtain the MSDM, a GMM is used to model the distribution of all the pixels in Qmotion as

Ginit
m =

Kinit
m∑

k=1

ωinit
m N

(
μinit

k , Σinit
k

)
(15)
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Fig. 6 Reduction in FOA using directional dilation

where Ginit
m represents an initial pixel distribution model for moving objects. Some Gaus-

sian components in Ginit
m correspond to background and/or non-skin moving object regions.

These Gaussian components should be nearer to the background model FBDM than to
FSDM. The proposed MBD measure is used to determine the overlapping of Ginit

m compo-
nents with FSDM and FBDM. The overlap between Gaussian components of Ginit

m and Gf

is given by

ε
f,m
i = exp

[
−dMBh

(
Ginit

m,i ,G
f
)]

for i = 1, ...Kinit
m (16)

Similarly, the overlap between Gaussian components of Ginit
m and the global background

model Ggb is given by

ε
gb,m
i = exp

[
− min∀j

dMBh

(
Ginit

m,i ,G
gb
j

)]
for j = 1, ...Kgb (17)

and the overlap between Gaussian components of Ginit
m and the local background model

Glb is given by

ε
lb,m
i = exp

[
− min∀j

dMBh

(
Ginit

m,i ,G
lb
j

)]
for l = 1, ...Klb (18)

The overall overlapping of Ginit
m with FBDM is expressed as

ε
f b,m
i = max

(
ε
gb,m
i , ε

lb,m
i

)
,∀i = 1, ...Kinit

m (19)

Finally, an inclusion criterion is proposed for Gaussian components of Ginit
m to the final

moving skin distribution model (MSDM) i.e., Gskin
m . The inclusion criterion is formulated

as follows:

Ginit
m,i ∈

{
Gskin

m :
(
ε
f,m
i > ε

f b,m
i

)
∧

(
ε
f,m
i > τ2

)
≡ true

}
(20)
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Fig. 7 Proposed method for reducing FOA using directional opening followed by directional dilation
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Frames

t-2 t-1 t

Frame at t-2 Frame at t-1 Frame at t

Frame difference at t-1 

& binarization
Frame difference at t 

& binarization

Directional opening

followed by

directional dilation

and OR operation

Directional opening

followed by

directional dilation

and OR operation

Logical OR

Binary mask at t-1

for moving object

Fig. 8 Flowchart of the modified DDF algorithm

2.3 Derivation of a Skin Mask

The pixels of each frame are classified into skin and non-skin pixels by using a Bayes
classifier [15]. The Bayes classifier provides a SPM for a frame at t . The SPM at a location
x represents a posteriori probability of a pixel X belonging to skin region at that location,
and it is defined as

SPM(x) = P(S) · P(X |S )

P (S) · P(X |S ) + P(NS) · P(X |NS )
(21)

where P(X |S) and P(X |NS) are likelihoods, P(S) and P(NS) are priors for skin (S) and
non-skin (NS) pixels, respectively. Hence, the SPM derived using FSDM and FBDM is
given by

SPMf (xt ) = P(S)Gf (Xt )

P (S)Gf (Xt ) + P(NS)Gf b(Xt )
(22)

The SPM value derived using MSDM and FBDM is given by

SPMm(xt ) = P(S) · Gskin
m (Xt )

P (S) · Gskin
m (Xt ) + P(NS) · Gf b(Xt )

(23)
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Fig. 9 Example of morphology-based moving object localization: a frames at t − 2, t − 1 and t , b mor-
phologically enhanced binarized difference frames at t − 1 and t , and c final localized moving object
regions

It is observed that SPMf can capture static skin regions more accurately, whereas SPMm

is more responsive to moving skin regions. Therefore, the final SPM at time t is expressed
as

SPMf inal(xt ) = max
{
SPMf (xt ), SPMm(xt )

}
(24)

The final skin mask Mask for a frame at t is obtained by thresholding SPMf inal with an
appropriate threshold θth as

Mask(xt ) =
{

1 if SPMf inal(xt ) ≥ θth

0 otherwise.
(25)

3 Experimental analysis

3.1 Experimental setup

To obtain a global background model Ggb, background samples were extracted from a set
of images selected at random from the ECU dataset [29]. To validate our proposed algo-
rithm experimentally, a set of sign language videos collected from the web were used.
The selected videos were captured in unconstrained illumination and varying background
conditions. Each video has a duration of 10 seconds with varying frame rate, spatial res-
olution and illumination conditions. For quantitative performance analysis, these videos
are manually annotated for skin and non-skin regions. From the annotated videos, it is
observed that P(S) ∼ [0.1, 0.2] for standard definition (SD) video (4:3 aspect ratio), and
P(S) ∼ [0.05, 0.15] for high definition (HD) video (16:9 aspect ratio). Hence, we judi-
ciously choose P(S) = 0.15 for SD videos and P(S) = 0.1 for HD videos. The respective
values for P(NS) are derived as P(NS) = 1 − P(S). Four quantitative measures, namely,
detection accuracy (Acc.), false alarm rate (δfp), miss rate (δf n), and total detection error
rate (δt ) are selected for evaluation, where δt = δfp + δf n. All the detection errors, are
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obtained by thresholding SPMf inal with a threshold θth. For simplicity of implementation,
we select τ1 = τ2 = τ .

3.1.1 Determination of τ

The parameter τ controls the inclusion of Gaussian components in Glb and Gskin
m . A smaller

value of τ results in the inclusion of Gaussian components into Gskin
m which belong to skin

colors in the background. This increases the chance of false alarms. However, a larger value
of τ results in inclusion of some Gaussian components into Glb. This increases the chance
of misses. Hence, we have proposed a selection scheme for the parameter τ as follows:

Let It be the frame at t . The chromatic randomness of an image can be determined from
its chromatic entropy. Our previous work [6] found that the chromatic entropy of a skin-
masked image, also termed as skin-chroma entropy (Es), approximates the false alarm rate.
The parameter Es can be obtained by

Es = −

∑
∀y∈Y

nX(y) log
(

nX(y)

NY

)

NY · log(2553)
(26)

where
y ∈

{
Y : P skin

rgb (y) ≥ θsp

}
(27)

and

P skin
rgb (y) = P(S) · Gf (X)

P (S) · Gf (X) + P(NS) · Ggb(X)
(28)

Here, nX(y) is the number of count of color vector X(y) and NY is the total number of pixel
locations in Y. The threshold θsp is obtained by using Otsu’s method [27].

Similarly, a face-masked version of It i.e., If ace is obtained by applying a face mask
derived by using the Viola and Jones algorithm [37]. Let Ef be the chromatic entropy of
If ace. Ideally, Es should be equal to Ef . However, in practice Iskin may contain skin colored
background regions along with some regions that contain skin. So, Es > Ef in presence of
skin colors in the background. Thus, we express the parameter τ as

τ =
[∑

n

(
Ef

Es

)n/2
]−1

�
[

1 +
√

Ef

Es

+ Ef

Es

]−1

(29)

where n = 0, 1, 2, .... As the ratio
Ef

Es
< 1, higher order powers (n > 2) are neglected.

3.2 Experimental validation

At first, we examine the effect of φmax on detection results. For this, detection errors are
calculated by varying φmax , and the results are given in Table 1. It is observed that when
φmax = 0◦, the average false alarm rate δf n,avg is maximal. For φmax = 0◦, the param-
eter ξ = 1

8 . This implies that some clusters corresponding to the true skin pixels in GI

are included in LBDM, and/or excluded from MSDM. In either condition, clusters whose
centroids are very close to that of FSDM are only selected as skin clusters. An increase in
φmax value causes more skin colored clusters to be excluded from the background model
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Table 1 Detection results for different values of φmax

φmax δfp,avg (%) δf n,avg (%) δt,avg (%) Avg. Acc. (%)

0◦ 6.41 14.34 20.75 92.50

10◦ 6.04 9.48 15.52 93.62

20◦ 5.78 8.19 13.97 94.04

30◦ 7.00 8.29 15.29 93.01

40◦ 11.09 8.53 19.62 89.59

50◦ 11.52 7.92 19.44 89.34

Table 2 Comparative analysis for the OBD and MBD

Method δfp,avg (%) δf n,avg (%) δt,avg (%) Avg. Acc. (%)

SPMf inal using OBD 6.13 11.28 17.41 93.26

SPMf inal using MBD 5.78 8.19 13.97 94.04

Fig. 10 Video comparison between the OBD and MBD
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Fig. 11 Video comparative bar charts for minimum δt values: a δt for different videos and b accuracy for
different videos

and/or included in MSDM. Thus, false alarms reduce with an increase in the value of φmax .
However, this increases the chance of misses. Some of the clusters of skin-like background
pixels can be included in MSDM and/or excluded from LBDM if the φmax is increased fur-
ther. For example, the average false alarms δfp,avg increases significantly for an increase in
φmax from 20◦ to 40◦. However, the average false alarm rate δf n,avg decrease significantly
for an increase in φmax from 0◦ to 20◦. It is also observed that for φmax ≥ 20◦, the average
total detection error δt,avg for all the videos becomes the lowest. Hence, φmax is fixed at 20◦
for the remaining analysis.

A comparative analysis was also performed between the original Bhattacharyya distance
and the proposed modified Bhattacharyya distance. Detection errors were calculated by
both OBD and MBD. As mentioned in (8), the maximum value of the MBD was fixed
by OBD. The comparison between the OBD and MBD in calculating SPM is shown in
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Fig. 12 Comparative detection results for different videos: a original frames, b Jones and Rehg [15], c ASSC
[19], d DSPF [20], e SASC [22], f FSPM [6], g proposed method, and h groundtruth. Here, white represents
hits, black represents correct rejections, red represents false alarms, and green represents misses

Table 2. In contrast to OBD, detection errors reduced due the application of the MBD. This
validates the efficacy of the proposed MBD in skin detection. In Fig. 10, two comparative
bar charts are given for different videos. The results show that δt |MBD ≤ δt |OBD . The total
detection errors were calculated at the maximum attainable accuracy values for different
videos. Figure 11 give the corresponding bar charts showing the δt and accuracy values for
different videos.

Finally, the proposed method is compared with state-of-the-art methods, such as Bayes
classifiers [15], fast propagation-based skin segmentation (FPSS) [18], adaptive seed-based
skin classification (ASSC) [19], skin detection by dual maximization of detectors agreement
(SDDMA) [33], discriminative skin-presence features (DSPF) [20], stacked autoencoders-
based skin classification (SASC) [22], and fusion-based skin probability map (FSPM) [6].
The detection results obtained by different methods are given in Table 3. The Bayes classi-
fier method proposed by Jones and Rehg [15] is considered as a benchmark. For training,
the method needs a set of skin and non-skin pixel samples, which are obtained globally.
However, the accuracy of this method depends on the training sample set. The Jones and
Rehg’s method produces more misses as compared with our proposed method. To compare
the SDDMA method with the proposed method, it is trained with NT F number of labelled
initial frames of nine videos (In total, 9 × NT F frames). However, SDDMA largely fails
to detect true skin regions. It produces the highest rate of misses among all the benchmark
methods. The DSPF method can give better results than the standard SPM, and it gives a
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Fig. 13 Detection results for videos with different characteristics: a-c video of dance where exposed skin
regions are small, d-g videos with textured background, and h video with dynamic background (sea)
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discriminative space-based skin map. The DSPF method mostly relies on the SPM derived
from global training samples, and thus it is not adaptive to local environmental conditions
of an image.

As the skin color of the face is similar to that of other body parts, face detection-based
skin model adaptation can perform well. The ASSC method uses adaptive seeds for growing
skin regions. The adaptive seeds are derived from a local skin model of facial skin pix-
els. The ASSC method relies on a standard SPM for region growing; hence, it is unable to
detect many skin pixels, resulting in more misses than the proposed method. The FSPM-
based method gives better detection accuracy by using image pixel distribution information
to derive a local skin probability map (LSPM). The LSPM is later fused with the original
or global SPM to get the FSPM. The FSPM can detect more skin pixels than other bench-
mark methods. In our method, the combination of FSDM and FBDM gives a static skin
detection model for video. The incorporation of MSDM makes the skin detection model
adaptive to local illumination changes, and a dynamic skin detection model for video is
obtained. The static model is prone to produce more misses than its dynamic counterpart.
The dynamic adaptation of the proposed MSDM to local illumination changes makes the
proposed system more robust under unconstrained illumination and background conditions.
In Fig. 12, the detection results are shown for all the test videos. The experiential results
show that the proposed method can detect skin regions in a video more accurately than
current state-of-the-art methods even in the presence of local color deformations. Some
additional detection results are shown in Fig. 13 where videos of different characteristics
are tested. Figure 13a-c show that the detection ability of the proposed algorithm is not
dependent on skin region sizes. However, Fig. 13d-g show that skin detection is robust
to background texture variation. Also, a video with dynamic background was tested, and
the detection result is shown in Fig. 13h. Therefore, it is evident from the results shown
in Fig. 13 that the proposed skin detection method can work flawlessly under different
background conditions.

4 Conclusion

Many vision-based human-computer interaction (HCI) applications require the segmenta-
tion of skin regions in video. This is challenging, however, when the shading of other body
parts causes local chromatic variations. We propose a skin detection method that dynami-
cally adapts to local skin color variations. The proposed method has three main components:
a facial skin pixel distribution model for user-specific skin modeling, a video-specific local
background distribution model, and a moving skin-pixel distribution model to detect skin
regions affected by local color deformations caused by moving body parts. The FSDM is
derived from a set of facial pixels from the initial frames of a video. The LBDM is derived
from the FSDM and a global background distribution model. A modified Bhattacharyya
distance is employed to measure similarity between two distribution models. Subsequently,
a fusion-based background distribution model is derived from the GBDM and LBDM. The
MSDM gives the distribution of moving skin pixels. The final skin detection model is
derived from the FSDM, the MSDM, and the FBDM. As the MSDM is updated at every
keyframe, the proposed skin model adapts to local illumination changes. The experimental
results show that the MBD produces fewer detection errors than the benchmark methods.

One research direction is to detect skin regions affected by both local and global illu-
mination variations. Global illumination variation may change the chromaticity of a scene
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(background and skin color). Therefore, a temporal model for global illumination change
needs to be estimated along with a moving scene color distribution model.
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