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The uncanny valley (UV) effect is a negative affective reaction to human-looking artificial entities. It hinders
comfortable, trust-based interactions with android robots and virtual characters. Despite extensive research,
a consensus has not formed on its theoretical basis or methodologies. We conducted a meta-analysis to assess
operationalizations of human likeness (independent variable) and the UV effect (dependent variable). Of 488
studies, 72 met the inclusion criteria. These studies employed 10 different stimulus creation techniques, 39
affect measures, and 14 indirect measures. Based on 247 effect sizes, a three-level meta-analysis model revealed
the UV effect had a large effect size, Hedges’ g = 1.01 [0.80, 1.22]. A mixed-effects meta-regression model
with creation technique as the moderator variable revealed face distortion produced the largest effect size,
g = 1.46 [0.69, 2.24], followed by distinct entities, g = 1.20 [1.02, 1.38], realism render, g = 0.99 [0.62, 1.36],
and morphing, g = 0.94 [0.64, 1.24]. Affective indices producing the largest effects were threatening, likable,

aesthetics, familiarity, and eeriness, and indirect measures were dislike frequency, categorization reaction time,

like frequency, avoidance, and viewing duration. This meta-analysis—the first on the UV effect—provides a
methodological foundation and design principles for future research.
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1 INTRODUCTION

Royle [2003] gives an evocative and succinct description of the uncanny experience:

The uncanny is ghostly. It is concerned with the strange, weird, and mysterious,
with a flickering sense (but not conviction) of something supernatural. The un-
canny involves feelings of uncertainty, in particular regarding the reality of who
one is and what is being experienced. (p. 1)

Objects, situations, and events that do not fit our everyday understanding of the world are often
described as eerie, creepy, or uncanny. These ascriptions can be made regarding new technologies
[Langer & König 2018], unusual human behavior [McAndrew & Koehnke 2016], or peculiar coin-
cidences [Freud 1919/2003]. Negative evaluations can hinder the adoption of supportive products
like healthcare robots [Olaronke Ojerinde & Ikono 2017] or service chatbots [Ciechanowski et al.
2019]. As the robotics pioneer Mori proposed in 1970, human-looking androids and other objects
could elicit a reaction unlike the one typically elicited by people or stylish technology. Mori [2012]
illustrated this phenomenon with a graph (Figure 1). The y-axis depicts affinity, the dependent

variable (DV), as a function of human likeness, the independent variable (IV), on the x-axis
[Bartneck et al. 2009b; Ho & MacDorman 2010, 2017; MacDorman & Ishiguro 2006]. The stimu-
lus sets in Figure 2 show how different creation techniques have been used to operationalize the
independent variable.

According to Mori [2012], affinity for an entity increases with its human likeness but only up to
a point. Beyond this point, affinity falls and becomes negative, and the entity elicits a cold, eerie,
repellant feeling. Then, affinity rises again, becoming positive, as human likeness increases toward
indistinguishability. When graphed, the fall and rise in affinity resemble a valley—hence, the term
uncanny valley (UV).

Since Mori’s proposal, a substantial body of research has replicated a valley-shaped curve and
found a significant effect [Burleigh et al. 2013; Ferrey et al. 2015; Jung & Cho 2018; MacDor-
man et al. 2009; Mäkäräinen et al. 2014; Mathur & Reichling 2016; Mathur et al. 2020; McDonnell
et al. 2012; Palomäki et al. 2018; Sasaki et al. 2017; Strait et al. 2017; Strait et al. 2015; Tinwell et al.
2015; Tinwell et al. 2011; Tinwell & Sloan 2014; Yamada et al. 2013]. However, some studies have
plotted functions other than a valley-shaped curve: For example, Kätsyri, de Gelder, and Takala
[2019] found affinity increased with human likeness, an “uncanny slope”; Cheetham, Suter, and
Jäncke [2014] interpreted increasing familiarity ratings with the transition from avatar to ambigu-
ous morph to human as a “happy valley”; and Bartneck, Kanda, Ishiguro, and Hagita [2009a] and
Cheetham, Wu, Pauli, and Jäncke [2015] found no difference in affective responses toward androids
and humans. Although the UV effect is seldom disputed, its theoretical basis and methodologies
have eluded consensus. This motivated us to examine how the independent and dependent vari-
ables in Mori’s graph have been operationalized in the literature.

Although several reviews have examined the UV effect [Kätsyri et al. 2015; Lay et al. 2016;
Wang et al. 2015; Zhang et al. 2020], this is the first meta-analysis to do so. It confirmed the effect’s
significance and determined its effect size. This is also, of course, the first meta-analysis to evaluate
the uncanny valley’s stimulus creation methods and affect and indirect measures. The evaluation
was accomplished using meta-regression models. From the results, we distill design principles for
future experiments.

The UV effect has been conceptualized in different ways. These conceptualizations often stem
from different theories and their assumptions about elicitors of the effect [Diel & MacDorman
2021]. They include:
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Fig. 1. The uncanny valley as proposed by Mori in 1970. The affective reaction towards an entity (y-axis) is

a function of its degree of human likeness (x-axis) and whether it is still or moving (solid or dashed line).

Bunraku puppets play character roles in ningyō jōruri, a traditional form of musical puppet theater in Japan.

Actors in nō theater wear masks: The yase otoko mask (literally, thin man) signifies a ghost from hell, and

the okina mask signifies an old man.

1. a function like Mori’s graph that maps a given degree of human likeness to a level of affect
[Bartneck et al. 2009a; Burleigh et al. 2013; Chen et al. 2010; Gray & Wegner 2012; Kätsyri
et al. 2019; Lin et al 2021; Ramey 2005; Sasaki et al. 2017; Schneider et al. 2009; Schwind
et al. 2018; Seyama & Nagayama 2007];

2. deviations from norms of human appearance and movement [Chaminade et al. 2007;
MacDorman & Ishiguro 2006; Mathur & Reichling 2016; Palomäki et al. 2018; Schoen-
herr & Burleigh 2015; Seyama & Nagayama 2007; Tinwell 2009; Tinwell et al.
2014];

3. violations of expectations about human appearance and behavior [Bartneck et al. 2009a;
MacDorman & Ishiguro 2006];

4. sensitivity to nonhuman features that increases with an entity’s human likeness
[Chattopadhyay & MacDorman, 2016; Green et al. 2008; MacDorman et al. 2013];

5. a mismatch between human and nonhuman features [Ho & MacDorman, 2010;
MacDorman et al. 2009; Mitchell et al. 2011b; Moore 2012; Takahashi et al. 2015; Tinwell &
Sloan 2014];

6. entities that elicit the concept human but have nonhuman traits [Steckenfinger &
Ghazanfar 2009]; and

7. difficulty distinguishing between categories, such as human and robot, or a conflict between
categories [Cheetham et al. 2013; Cheetham et al. 2011, 2014; Cheetham et al. 2015; Matsuda
et al. 2012].

1.1 The Independent Variable

1.1.1 Construct. In experiments on the UV effect, the independent variable is typically human

likeness or a similar term. However, it is unclear precisely how human likeness relates to the UV
curve. Human likeness can be characterized along many dimensions, which interact to create an
overall impression of humanness [Bartneck et al. 2009b; von Zitzewitz et al. 2013]. Mori [2012]
examines both the outward appearance and the behavior of androids, corpses, and industrial and
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Fig. 2. Different operationalizations of the independent variable human likeness [Feng et al. 2018; Ferrey

et al. 2015; MacDorman et al. 2009; Mäkäräinen et al. 2014, derived from Langner et al. 2010; Mathur &

Reichling, 2016; Schindler et al. 2017].

toy robots. In discussing mannequins, prostheses, and bunraku puppets, he draws in other di-
mensions, such as the setting, lighting, story, time of day, and the perceiver’s gender and dis-
tance. Research corroborates the multidimensionality of human likeness in exploring the relation
between the UV effect and an entity’s physical [MacDorman & Ishiguro 2006; Seyama & Nagayama
2007], behavioral [MacDorman et al. 2005; Złotowski et al. 2015], and perceived mental similar-
ity to humans [Gray & Wegner 2012; Stein & Ohler 2017]. The perception of nonhuman animals
can also elicit the UV effect [Chattopadhyay & MacDorman 2016; Löffler, Dörenbächer & Hassen-
zahl 2020; Schwind et al. 2018; Takahashi et al. 2015; Yamada et al. 2013]. This result casts doubt
on whether the independent variable solely concerns human likeness. Realism or zoomorphism

have served as alternative concepts. Furthermore, Mori [2012] uses human likeness to denote in-
terchangeably both an entity’s physical properties and how it is perceived. In research, however,
the distinction is necessary. Physical properties, for example, can be directly manipulated as an
independent variable.
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1.1.2 Stimulus Range. We compiled a list of categories to summarize stimulus creation tech-
niques. The list derives from the stimuli appearing in publications of empirical research and de-
scriptions of how they were created [e.g., Mitchell et al. 2011b; Seyama & Nagayama 2007]. We
started with six a priori categories and added categories during the literature search when a pa-
per’s stimuli did not fit in any existing category. Saturation was reached at 10 categories. The
categories encompass the research reviewed, enabling its techniques to be easily classified, and re-
flect its theoretical and methodological breadth. The 10 categories of techniques are listed below:

Distinct entities: Selecting images or videos of existing robots, androids, computer-animated
characters, humans, or other entities [e.g., Mathur et al. 2020]. This technique is theory-
independent and can be used with both still and moving entities, such as characters from films,
video games, and virtual worlds.

Emotion manipulation: Distorting affective expressions [e.g., Qiao & Roger 2011; Qiao et al. 2011;
Tinwell et al. 2014]. This technique visually manipulates the emotional expression of the face. It
has been used mainly to test empathy-related theories.

Face distortion: Distorting facial features and proportions [e.g., Mäkäräinen et al. 2014]. This
technique visually manipulates facial features or the relations among them until the face no longer
appears real. The emotional expression is not intentionally manipulated. This technique has been
used to test theories related to configural processing [e.g., MacDorman et al. 2009].

Mismatch: Swapping facial features with those of another face that differs along one or more
dimensions—typically animacy, human likeness, or realism [e.g., Seyama & Nagayama 2007]. This
technique has been used to test theories related to perceptual mismatch [MacDorman & Chat-
topadhyay 2016].

Morphing: Varying the stimulus in a stepwise transition between a pair of images to create a
range of stimuli [e.g., MacDorman & Ishiguro 2006]. This technique has been used to transform the
stimulus gradually from one kind of entity to another, thus making it suitable for testing category-
related theories [e.g., Cheetham et al. 2015; Sasaki et al. 2017].

Motion manipulation: Distorting an animation’s biological motion [e.g., gait, Destephe et al. 2014;
Handzic & Reed 2015; motion quality, Piwek et al. 2014; Thompson et al. 2011]. This technique has
been used to test whether the UV effect occurs in motion perception.

Realism render: Varying how real the stimuli appear by representing them as cartoons or as
computer models with a reduced polygon count or simplified textures [e.g., McDonnell et al. 2012;
Muniady & Ali 2020]. This technique is theory-independent and relevant to the practical applica-
tion of visual design.

Real-life encounter: Presenting different embodied entities like robots, androids, and humans
for observation or interaction [e.g., Złotowski et al. 2015]. This technique encompasses multiple
modalities and, thus, can be used to measure a holistic UV effect. It is also useful because a physical
object could be perceived and evaluated differently from its two-dimensional depiction [Snow et al.
2014]. Moreover, this technique is ecologically valid.

Visuo-auditory mismatch: Replacing a human voice with a synthesized voice or vice versa in an
animation [e.g., Mitchell et al. 2011b; Stein & Ohler 2018]. Although typically motivated by percep-
tual mismatch theories, this technique differs from the mismatch category because the mismatch
is crossmodal.

Voice distortion: Distorting natural human voices as auditory stimuli [e.g., Baird et al. 2018;
Kühne et al. 2020]. This technique has been used to test whether the UV effect can occur solely
within audition.

1.1.3 Measurement. To assess the degree of human likeness (or related concepts), either single-
scale measures or indices consisting of multiple scales have been used [e.g., Burleigh et al. 2013;
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Ho & MacDorman 2010, 2017]. Experiments typically vary the stimulus systematically in its degree
of human similarity. Manipulations include distorting it [Mäkäräinen et al. 2014] or controlling its
morphing proportion between two images [Cheetham & Jäncke 2013]. Experiments may include a
manipulation check, such as rating the stimulus on human likeness. For computer-modeled stim-
uli only, Burleigh, Schoenherr, and Lacroix [2013] proposed two objective properties, which they
define as follows: texture resolution, the number of pixels per unit of surface area, and polygon
count, the number of polygons constituting a three-dimensional model. However, human likeness
and realism are two different constructs. Thus, the results of a study measuring human likeness
may not be comparable to the results of a study measuring realism. Research has not compared
how changes in these independent variables or others may influence affect measures differently.

1.2 The Dependent Variable

1.2.1 Construct. Mori [2012] represents the y-axis with the term shinwakan, a neologism he
translates as affinity. The y-axis had initially been translated as familiarity [Reichardt 1978]. Other
proposed constructs include interpersonal warmth (or likability) and reverse-scaled eeriness [Bart-
neck et al. 2009b; Ho & MacDorman 2010, 2017; Redstone 2013]. Eeriness and its synonym creepiness

correlate with aversive experiences like disgust, fear, and anxiety [Ho, MacDorman, & Pramono,
2008].

1.2.2 Measurement. In experiments on the UV effect, the dependent variable is typically mea-
sured with single-scale measures or indices composed of self-reported affective items. Semantic
differential scales are common. Semantically, some items like eerie, creepy, and uncanny are specific
and, on face value, capture the distinctive experiential quality of the UV effect [Ho & MacDorman
2010; Mangan 2015; Palomäki et al. 2018; Redstone 2013; Tinwell et al. 2013]. Other items like
pleasantness or likability are nonspecific. An entity could rate low on them without being uncanny
at all [e.g., items in Bartneck et al. 2009b; Ferrey et al. 2015; Rosenthal–von der Pütten & Krämer
2014; Yamada et al. 2013].

Questionnaires that have been developed to evaluate robots in general have been repurposed
to measure the UV effect. Examples include the Godspeed indices [Bartneck et al. 2009b] and the
Robotic Social Attribution Scale [Carpinella et al. 2017]. Ho and MacDorman’s [2010, 2017] set of
indices includes humanness, interpersonal warmth, attractiveness, and eeriness. They developed the
set to decorrelate these dimensions so they could be plotted against each other on orthogonal axes.

Indirect measures may indicate a construct by measuring a different construct. For example,
the UV effect may correlate with trust behavior [Mathur & Reichling 2016]. Implicit measures,
grouped here with indirect measures, center on processes that are automatic, effortless, fast, goal-
independent, stimulus-driven, uncontrolled, and unintentional. For example, response time and
other performance measures of the UV effect typically are implicit measures. Implicit measures
counter self-presentational bias, that is, respondents’ attempts to influence how others perceive
them. Implicit measures may indicate the UV effect in otherwise inaccessible populations, such as
infants or nonhuman animals.

Apart from trust behavior, the UV effect has been measured by such indirect measures as avoid-
ance behavior [Matsuda et al. 2012], perceived responsiveness [Tinwell et al. 2013], and cognitive
conflict and categorization reaction time [RT, Cheetham & Jäncke 2013].

1.2.3 Other Constructs. Other constructs and their associated measures and theories
include:

Aesthetics: Items measuring aesthetic appeal [Sansoni et al. 2015; Schwind et al. 2018]. These
items conceptualize the UV effect as a lack of physical attractiveness. Thus, they can serve as
a practical tool for design [Hanson et al. 2005; Ho & MacDorman 2010, 2017]. Research has used
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nonhuman [e.g., Schwind et al. 2018] as well as human stimuli with the latter leveraging on theories
of evolutionary aesthetics. These theories frame the UV effect as resulting from a mechanism for
avoiding mates with low fitness as determined by the absence of physical markers of fertility,
health, and youthfulness [MacDorman et al. 2009; MacDorman & Ishiguro 2006].

Animacy and experience: Items measuring perceived animacy [Looser & Wheatley 2010], re-
sponsiveness [Tinwell et al. 2014], and mind [Appel et al. 2016]. These items relate to theories
about how the perceived presence or absence of these qualities elicits the UV effect. For exam-
ple, Gray and Wegner [2012] proposed that a machine having conscious experiences—or a human
being lacking them—would be perceived as uncanny; the authors’ creation techniques are broad:
android robot videos, text about a supercomputer, and a photo of a man.

Anomaly: Items measuring an entity’s perceived deviation from the norm. Anomaly items, such
as strange or weird, are associated with atypicality theories. These theories predict that the UV
effect is elicited by an entity whose features cause it to deviate strongly from its prototype [Kätsyri
et al. 2015; Strait et al. 2017]. Anomalies are easily created in images, where features can be moved,
reflected, rotated, and scaled [e.g., Diel & MacDorman 2021].

Disgust: Items measuring disgust, a predictor of the UV effect [Ho, MacDorman, & Pramono
2008]. These items relate to the theory that the UV effect results from an evolved mechanism for
pathogen avoidance [MacDorman & Entezari 2015].

Distinctive experience: Items measuring the UV effect as the subjective experience of uncanniness

or eeriness, which may be correlated with fear, anxiety, and disgust [Bartneck et al. 2009a; Ho,
MacDorman, & Pramono 2008]. This research conceives of the UV effect as an experience distinct
from general psychological discomfort or anxiety. Gahrn-Andersen [2020] and Mangan [2015]
have related the phenomenological study of the uncanny to the theories of Martin Heidegger and
William James.

Familiarity: Items measuring the UV effect as feelings of unfamiliarity, based on Reichardt’s
[1978] translation of shinwakan as familiarity. Typically, in cognitive psychology, familiarity is
contrasted with novelty: 0% familiarity is 100% novelty. However, when inspecting the y-axis of
Mori’s [2012] graph, the familiar–novel contrast leads to contradiction. On this interpretation, the
bottom of the valley lies in negative familiarity, beyond 100% novelty, which cannot exist. One finds
a different interpretation in Freud’s [1919/2003] theory of the uncanny. To Freud, the uncanny is
not the perception of something novel or unfamiliar. Rather, it is the recollection of something
intimately familiar, perhaps from early childhood, that has long been estranged through repres-
sion [MacDorman & Entezari 2015; MacDorman & Ishiguro 2006]. Freud asserts that repression
transforms every emotional affect—including uncanniness—into anxiety (Angst).

General anxiety: Items measuring a state of anxiety or stress without relating it specifically to
the subjective experience of the uncanny. The items are associated with theories based on category
inhibition, cognitive conflict [Ferrey et al. 2015], and perceptual tension [Moore 2012]. Their use
may reflect the assumption that the experiential quality of the UV effect is no more specific than
the psychological discomfort caused by cognitive dissonance or cognitive load.

Interpersonal warmth: Items measuring the primary dimension of social perception, interper-
sonal warmth, which accounts for 53% of the variance in perceptions of social behaviors [Fiske
et al. 2007; Fiske et al. 2002]. This dimension is measured with positive affect items, like likable,

pleasant, and friendly, which load on the same factor in factor analyses [Bartneck et al. 2009a; Ho
& MacDorman 2010]. The construct is intended to measure how feelings about an entity change
with its degree of human likeness. The dimension is roughly synonymous with affinity, the y-axis
of Mori’s [2012] graph, though as a construct warmth has been more thoroughly investigated.
The use of warmth items to measure the UV effect is grounded in the assumption that warmth and
uncanniness are inversely related. However, feelings of coldness—the low end of the scale—differ
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from feelings of uncanniness. For example, we might have warm feelings for the conductor (Tom
Hanks) in The Polar Express (2004) while also having uncanny feelings because of the way he
is computer animated. Furthermore, the generality of warmth items makes them susceptible to
confounds. Stimulus evaluation could be influenced by, for example, background, clothing, color,
narrative and framing, verbal and nonverbal behavior, interactivity, personality, relationships,
and culture [Brink et al. 2019; Kennedy 2014; Łupkowski et al. 2018; MacDorman 2019; Shin et al.
2019]. Thus, warmth items do not indicate the UV effect but a related construct.

Threat: Items measuring a negative emotional response to dead animals, ranked by the species’
similarity to living humans, motivated by theories that conceive of the UV effect as an evolved
threat-avoidance mechanism [Moosa & Ud-Dean 2010; Palomäki et al. 2018; Rosenthal et al. 2014].
The entities could also appear threatening because of their ambiguity [McAndrew & Koehnke
2016].

Trust: Numerical indicators of trust, such as the amount of money invested while playing a
game, with a smaller investment indicating less trust. A decrease in trust could result from the UV
effect in perceiving android robots or avatars. Mathur and Reichling [2016] relate trust measures
to Hardin’s [2002] theory of encapsulated interest: We trust those whose interest encapsulates
our own. In their game, they raise the question of whether human players were really taking an
intentional stance toward the robot or merely acting as if they were.

2 METHODS

The lack of consensus in the UV literature, both theoretical and methodological, should now be
evident. It motivates our meta-analysis, the first of its kind. We evaluate the effectiveness of stim-
ulus creation techniques as well as affect and indirect measures. Based on the results, we propose
empirically derived design principles for future research.

2.1 Inclusion Criteria

The meta-analysis only included a study if it met the criteria below based on the information given:
Empirical study: The study contains the results of at least one data analysis conducted by its

authors.
Representative participants: The study uses healthy adults, children, or infants. Excluded were

studies restricted to a specific subgroup, such as people with autism spectrum disorder.
Relevant stimuli: The stimuli belong to at least one of the 10 creation techniques.
Adequate stimuli: The stimuli lack obvious confounds like noise created by editing images.
Affect or indirect measures: Affect measures include single-scale items or indices used to self-

report an affective appraisal of the stimulus. Indirect measures include everything else. Studies
with either or both were included.

Testing a UV hypothesis for statistical significance: The study has one or more hypotheses de-
signed to test the UV effect. For each hypothesis, a test statistic is applied to the collected data.
Studies with both significant and nonsignificant effects were included.

Appropriate variables: Testing for a change in an affect or indirect measure resulting from a
change in human likeness or a related variable (e.g., realism, zoomorphism). Thus, all studies were
experiments.

Effect size determinable: The study must give enough information to calculate an effect size and
its variance.

2.2 Study Search and Selection

In March 2021, we searched PubMed, Science.Gov, and the Web of Science for papers with
uncanny valley in their title, abstract, or keywords. After removing 33 duplicates, 488 studies
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Fig. 3. The flowchart depicts the process of study selection.

remained of which 155 included UV significance testing (see Data Availability). Although 98 met
other review criteria, only 72 had determinable effect sizes. These studies appeared in 56 papers
published from 2008 to 2021. Figure 3 summarizes the article selection process.

From its description, we placed each IV operationalization under the best-fitting stimulus cre-
ation technique.

For DV operationalizations, single items were generally grouped separately. Nouns formed from
adjectives were grouped with those adjectives (e.g., eeriness with eerie). The item creepy and se-
mantic differential scales like creepy–friendly and creepy–pleasant were group as creepy*. Affect
measures were grouped separately from indirect measures. For example, the item trustworthy was
counted as an affect measure, separate from trust behavior, an indirect measure. If a study used
a negative variant of an often-used positive item, the item was grouped with the positive vari-
ant (e.g., unpleasant with pleasant). Indices used in multiple studies were counted as separate in-
dex items and marked with the suffix -i [e.g., those developed by Bartneck et al., 2009b; Ho and
MacDorman, 2010, 2017; Schwind et al. 2018].

We then recorded or calculated effect sizes and effect size variances, labeling each with its cor-
responding IV and DV. If a study used more than one IV or DV operationalization, each effect size
was recorded or calculated.

2.3 Data Analysis

A random-effects model was selected for the meta-analysis because study populations and de-
signs differed and affect and indirect measures were used in combination with different stimulus
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creation techniques. A three-level model was used with effect nested by study. The meta-regression
for moderation analysis was performed using a mixed-effects model. The model was fitted by re-
stricted maximum-likelihood estimation.

Effect size is reported here as Hedges’ g. The effect size, its 95% confidence interval, and the
number of measures from which it was derived, k, are all reported. Effect size is interpreted with
small = 0.20, medium = 0.50, and large = 0.80 thresholds.

If three or more conditions were compared, such as robot, android, and human, two separate g’s
were calculated: one for the posited descent from the first peak in Mori’s graph to the base of the
valley and the second for the posited ascent from the base of the valley to the second peak. For
convenience, the descent is denoted as the UV’s nonhuman side and the ascent as the UV’s human

side.
The definition of an influential effect was adopted from Viechtbauer and Cheung [2010], as

explained in the results section.
Moderator variables for the independent variable were the creation technique. Moderator vari-

ables for the dependent variable were (separately) the side of the valley, side × valence (positive or
negative) × measure type (affect or indirect), affect measure, indirect measure, and other construct.
Finally, paper was used as a moderator variable.

2.3.1 Effect Size Calculation. The meta-analysis used the standardized mean difference and its
variance. Hedges’ g was used to correct for the positive bias of Cohen’s d in smaller studies,

д = d
(
1 − 3

4 df − 1

)
, (1)

vд = vd

(
1 − 3

4 df − 1

)2
, (2)

where df indicates the degrees of freedom [Borenstein et al. 2011]. If a study did not report g, it was
calculated from the means and standard deviations or by converting another reported measure of
effect size. For within-group studies, which were the majority, dav and vav were used,

dav =
m1 −m2
1
2 (s1 + s2)

, (3)

vdav =
1

n
+
d2

2n
, (4)

where n is the number of participants [Lakens 2013]. This approach leads to slightly wider confi-
dence intervals than d for repeated measures. However, the calculation of drm requires the corre-
lation between means, which no study reported. For ANOVAs, η2 was first calculated:

η2 =
F × df1

F × df1 + df2
(5)

Next, to calculate g, η2 was converted to d [Cohen 1988]:

d = 2

√
η2

1 − η2
(6)

R2, Pearson’s r, and Cramér’s V were plugged into the same formula. For the t statistic, d was
calculated for between-groups studies by imputing r = 0.5 in the formula

d = t

√
2 (1 − r )

n
. (7)
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3 RESULTS

The 72 studies in the meta-analysis employed 10 different stimulus creation techniques and 53
different measures, 39 of which were affect measures and 14 of which were indirect measures.

In total, 61 studies included affect measures, and 23 included indirect measures. The studies
ranged in size from 10 to 1,311 participants with a median size of 64.5 and an interquartile range
of 34 to 203.5. Of the 249 measured effects, 85 involve the nonhuman side of the UV, 71 involve the
human side, and 93 involve both sides simultaneously.

The three-level meta-analysis model, including two outliers, revealed that the UV effect had a
large effect size, g = 0.95 [0.76, 1.14], p < .001, k = 249, Akaike information criterion (AIC) = 724.92,
QE(248) = 10,241.38, p < .001, QM(1) = 93.30, p < .001. Excluding the two outliers, discussed below,
increased the effect size, g = 1.01 [0.80, 1.22], p < .001, k = 247.

3.1 Three-level Model

The meta-analysis often draws multiple effect sizes from the same paper and even from the same
study. Thus, the effect sizes are not statistically independent [Cheung 2019]. To address this, we
investigated different three-level models.

The model with the lowest estimated prediction error, excluding outliers, has paper as its higher-
order grouping variable and effect as its nested lower-order grouping variable, QE(246) = 9725.21,
p < .001, QM(1) = 88.53, p < .001. The model has lower estimated prediction error (paper/effect:
AIC = 675.17) than the other three-level models (study/effect: AIC = 683.05, technique/effect: AIC

= 714.85, measure/effect: AIC = 715.20). Its prediction error is significantly lower than two-level
models (effect: AIC = 717.57, p < .001, paper: AIC = 4915.67, p < .001). Of the total variance, 38.53%
is between-paper heterogeneity, 60.34% is within-paper heterogeneity (total I2 = 98.87), and 1.13%
is sampling error.

3.2 Bias

Figure 4a shows a funnel plot of effect sizes against their standard errors for this meta-analysis.
Since standard error is inversely proportional to sample size, larger studies appear at the top and
smaller studies at the bottom. In the absence of bias, sampling error should distribute effect sizes
randomly but symmetrically about their weighted mean. In the funnel plot, however, the effect
sizes tend to increase with their standard errors. A regression test with standard error as the pre-
dictor variable and Hedges’ g as the outcome variable indicated significant funnel plot asymmetry
(z = 6.72, p < .001, k = 249).

Funnel plot asymmetry could result from publication bias because the meta-analysis relied on
published data only. In general, studies reporting a significant effect are more likely to be published.
If a true effect exists, a smaller study will require a larger effect size to reach significance. Moreover,
given that large studies constitute a major commitment of resources, they are more likely to be
published even if their effects are nonsignificant.

One approach to addressing bias is to limit the meta-analysis to larger studies and then to check
whether bias is still present and whether the effect size is still large enough to be of substantive im-
portance [Borenstein et al. 2009]. We tried a version of this approach by excluding the effects with
the largest standard errors and retesting for funnel plot asymmetry. After excluding 66 effects—
that is, 27% of the total, as shown in Figure 4b—funnel plot asymmetry for the remaining effects
became nonsignificant (z = 1.95, p = .051, k = 183). The effect size, however, was reduced 28%,
g = 0.68 [0.51, 0.85], k = 183. Though smaller, it remains of substantive importance.

Bias was next assessed by p-curve analysis. A plot of p values against percentage of effects
should be flat if there is no effect and right skewed if there is one. A left skew indicates bias, a
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Fig. 4. The funnel plot graphs effect sizes from the meta-analysis against their standard errors: (a) all stan-

dard errors; (b) the lowest 73% of standard errors. Influential effects are indicated in red.

Fig. 5. The p-curve for the meta-analysis’s 249 effects.

publication environment in which obtaining significance at the .05 level is incentivized, but lower
p values are unnecessary. This could result from publication bias or from p-hacking, mining the
data for patterns and then failing to control for multiplicity in reporting significance. Of 249 effects,
p ≤ .05 for 213 (86%), and p ≤ .025 for 207 (83%). The right-skewness test, pbinomial < .001, zfull =

–73.80, pfull < .001, zhalf = –72.50, phalf < .001, was significant, which indicates a true effect (Figure
5). The flatness test was nonsignificant, pbinomial > .999, zfull = 65.35, pfull > .999, zhalf = 69.70, phalf

> .999; thus, the test did not indicate insufficient power or the absence of a true effect. The power
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Fig. 6. DFFITS and Cook’s D for the effects in the meta-analysis, sorted from lowest to highest standard

error. Influential effects are indicated in red.

estimate is 0.99 [0.99, 1.00]. The tests were repeated, with similar results, for only the 66 effects
with the largest standard errors. Thus, p-curve analysis supports the conclusion that the effect is
true. It is not simply the result of publication bias or p-hacking.

3.3 Influential Effects

Viechtbauer and Cheung [2010] proposed that an effect is influential if it meets one of the following
four criteria:

|DFFITS| > 3

√
p

k − p , (8)

where p is the number of model coefficients and k the number of effects, the Cook’s distance,

Di > χ 2
p, 50%, (9)

where p is the model’s degrees of freedom, indicating the deletion if the i’th effect decreases the
Mahalanobis distance between effects,

hat >
3p

k
, and any (10)

DFBETA > 1. (11)

Two effects were identified as influential by the first two criteria (Figure 6), and both pertained
to the UV’s nonhuman side: Rosenthal et al.’s [2014] unfamiliar-i, g = –2.95, DFFITS = –0.224,
D = 0.047, hat = 0.004, DFBETA = –0.224, and Wang et al.’s [2020] alive, g = –2.77, DFFITS =
–0.205, D = 0.040, hat = 0.004, DFBETA = –0.205. They were treated as outliers for reasons dis-
cussed below and included in analyses selectively.

3.4 Independent Variable Operationalizations

3.4.1 Moderator: Creation Techniques. Moderation analysis was performed, excluding outliers,
using a mixed-effects meta-regression model with effect as the random variable and creation tech-
nique as the moderator variable, AIC = 701.33, QE(237) = 8984.08, p < .001, τ ² = 0.91, I2 = 98.62,
QM(10) = 272.53, p < .001. Face distortion produced the largest effect size, followed by distinct

entities, realism render, and morphing (Figure 7).
Distinct entities studies typically used stimuli that could have confounding effects (e.g., body

language, facial expressions, lighting, viewing perspective). To reduce their risk, a few studies
applied standards for stimulus selection—for example, full face shown in frontal or three-fourths
aspect, resolution sufficient to generate a final image three inches in height at 100 dpi, and no other
body parts visible [Brink et al. 2017; Mathur & Reichling 2016]. When only distinct entities studies
with standardized stimuli were considered, three in total, g fell to 0.82 [–0.12, 1.77], k = 4, and the
effect became nonsignificant, p = .089.
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Fig. 7. Creation technique is the moderator variable in the meta-regression model. For each of its values,

Hedges’ g, the 95% confidence interval, and number of effects (k) are listed. The position of the blue square

depicts the effect size, and its relative size depicts the precision. The width of the diamond depicts the

confidence interval of the summary effect size.

Four studies used nonhuman animal stimuli, AIC = 32.95, QE(17) = 373.46, p < .001,
QM(1) = 32.95, p < .001 [MacDorman & Chattopadhyay 2017; Schwind et al. 2018; Yamada et al.
2013]. Their 18 effects were all significant, g = 1.94 [1.28, 2.60], k = 18. Stimulus operationalization
techniques for animal stimuli were comparable with those for human stimuli, including distinct

entities [Rativa et al. 2020; Takahashi et al. 2015], emotion manipulation, face distortion, realism

render [Chattopadhyay & MacDorman 2016; Schwind et al. 2018], and morphing [Yamada et al.
2013].

3.5 Dependent Variable Operationalizations

3.5.1 Moderator: Side of the Uncanny Valley, Valence, and Type of Measure. Moderation analysis
was performed, including outliers, with effect as the random variable and side of the valley as the
moderator variable, AIC = 731.92, QE(246) = 9942.04, p < .001, τ ² = 1.00, I2 = 98.80, QM(3) = 239.92,
p < .001. If possible, an effect size was calculated for each side of the uncanny valley. However,
this was not possible for 37% of effect sizes, usually because the means and standard deviations
were not reported. In these cases, a combined effect size for both sides of the valley was calculated
(e.g., based on an F statistic). For the human side, g = 1.34 [1.10, 1.57], p < .001, and k = 71, for
the nonhuman side, g = 0.64 [0.43, 0.86], p < .001, and k = 85, and for both sides, g = 0.98 [0.77,
1.19], p <.001, and k = 93. Thus, the effect size for the human side was more than double that of
the nonhuman side.

To investigate this disparity, we repeated the analysis with side × valence (positive or negative)
×measure type (affect or indirect) as the moderator variable (Figure 8). The combined value human

positive affect had the largest affect size, g = 1.69 [1.34, 2.03], p < .001, k = 32 and nonhuman positive

affect had the smallest. Thus, among all measures, positive affect measures were the most effective
at measuring the human side of the valley and the least effective at measuring the nonhuman
side. A Wald-type test revealed this difference in effectiveness was significant, QM(12) = 276.73,
p < .001. For the human side, affect measures were more effective than indirect measures. For
the nonhuman side, indirect measures were more effective than affect measures, and negative
measures were more effective than positive ones.

3.5.2 Moderator: Affect Measures. Moderation analysis was performed, excluding outliers, with
effect as the random variable and affect measure as the moderator variable, AIC = 537.05, QE(159)
= 4544.64, p < .001, τ ² = 0.92, I2 = 98.51, QM(38) = 247.70, p < .001 (Figure 9). Indices produc-
ing effects that were larger than average include threatening-i (threatening, eerie, uncanny, dom-

inant, harmless), likable-i (pleasant, likable, attractive, familiar, natural, intelligent), aesthetics-i
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Fig. 8. Side of the uncanny valley is the moderator variable in the meta-regression model.

Fig. 9. Affect measure is the moderator variable in the meta-regression model. Creepy* combines the item

creepy with scales including the term, such as creepy–pleasant and creepy–friendly.
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Fig. 10. Indirect measure is the moderator variable in the meta-regression model.

(ugly–beautiful, unaesthetic–aesthetic), familiarity-i (uncanny–familiar, freaky–numbing), and
eeriness-i (dull–freaky, predictable–eerie, plain–weird, ordinary–supernatural, boring–shocking,

uninspiring–spine-tingling, predictable–thrilling, bland–uncanny, unemotional–hair-raising). Indi-
vidual items include reassuring, threatening, believable, appealing, acceptable, alive, and eerie. How-
ever, when the two outliers are included, alive falls from the 12th highest effect size, g = 1.19 [0.33,
2.06], p = .007, k = 5, to the 29th, g = 0.55 [–0.27, 1.37], p = .191, k = 6, and is no longer significant.
The other outlier, unfamiliar-i (strange, unfamiliar) appears last, g = –2.95 [–4.94, –0.95], p = .004,
k = 1.

3.5.3 Indices and Multiple Scale Analyses. A variety of terms have been used to measure differ-
ent constructs underlying the UV effect. The relations among the terms can give insight into the
UV effect’s experiential quality. In studies with several terms, we investigated their intercorrela-
tions to determine whether they reflect the UV effect or instead a related construct. Table A1 in
the Appendix lists the interscale correlations observed in the reviewed research.

As a measure of reliability, 15 studies in the meta-analysis reported the Cronbach’s α of the
indices used. Ho and MacDorman’s [2010, 2017] eeriness and warmth indices and their derivations
were generally reliable. Distinctive experience terms (e.g., creepy, eerie, and uncanny) tended to load
on the same factor [e.g., Destephe et al. 2015; Lischetzke et al. 2017]. In a principal component

analysis (PCA), the items uncanny and eerie loaded on the same component as threat-related
items, and the items strange and unfamiliar as anxiety-related items [Rosenthal–von der Pütten &
Krämer 2014; Ho, MacDorman, & Pramono 2008, found fear and disgust to be stronger predictors
of eerie and creepy than anxiety]. In a similar vein, removing strange from an index consisting of
eerie, unsettling, and strange improved its reliability [Kätsyri et al. 2017]. This indicates uncanniness

and strangeness may be different constructs.
Finally, likable, friendly, pleasant, and other warmth items typically comprise reliable indices

[e.g., Kätsyri et al. 2017; Rosenthal–von der Pütten & Krämer 2014; Tung 2016], which indicates
an interpersonal warmth construct for the tested stimuli [e.g., Bartneck et al. 2009a].

3.5.4 Moderator: Indirect Measures. Moderation analysis was performed, excluding outliers,
with effect as the random variable and indirect measure as the moderator variable (Figure 10). Dis-

like frequency, which indicates the number of times disliked, had the largest effect size [Strait et al.
2019], followed by categorization reaction time [Carr et al. 2017; Cheetham & Jäncke 2013; Mac-
Dorman & Chattopadhyay 2017; Wang & Rochat 2017; Yamada et al. 2013], like frequency [Strait
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Fig. 11. Construct is the moderator variable in the meta-regression model.

et al. 2019], avoidance behavior attributions to uncanniness [Perez et al. 2020], viewing duration

[Strait et al. 2015, 2019], preference choice in a two-alternative forced-choice categorization task
[Feng et al. 2018; Prakash & Rogers 2015], and preferential looking, that is, preferring to view one
stimulus more than another [Matsuda et al. 2015; Nitta & Hashiya 2021].

Nonsignificant effect sizes include lie detection, that is, frequency of rating a statement as a lie
[McDonnell & Breidt 2010], cognitive conflict, operationalized as number of reversals of direction
when moving a stimulus with a mouse pointer towards one of two categories [Weis & Wiese
2017], trust behavior, specifically the amount of money entrusted with an entity in an investment
game [Mathur & Reichling 2016], encounter duration, that is, viewing duration until the participant
terminates the encounter [Perez et al. 2020], termination frequency, measured by the number of
times terminated [Perez et al. 2020; Strait et al. 2015, 2017, 2019], information processing about an
entity, as indicated by the number of personality judgments made [Shin et al. 2019], and ABX task,
which entails visual same–different discriminations [Cheetham et al. 2014].

3.6 Other Constructs

After grouping measures by other UV construct, moderation analysis was performed, excluding
outliers, with effect as the random variable and other construct as the moderator variable, AIC =

386.28, QE(122) = 2999.63, p < .001, τ ² = 1.02, I2 = 98.29, QM(10) = 119.67, p < .001 (Figure 11).
Animacy and experience had the largest effect size, g = 1.26 [0.44, 2.09], p = .003, k = 6. However,
if outliers are included, this construct falls from first to eighth and becomes nonsignificant, g =

0.70 [–0.10, 1.51], p = .088, k = 7. Other constructs with significant effects, in decreasing order of
effect size, were aesthetics, interpersonal warmth, distinctive experience, threat, trust, anomaly, and
disgust. General anxiety and familiarity had nonsignificant effects.

3.7 Papers

For reference, a moderation analysis was performed, excluding outliers, with effect as the random
variable and paper as the moderator variable, AIC = 585.95, QE(191) = 5058.35, p < .001, τ ² = 0.61,
I2 = 98.05, QM(56) = 552.95, p < .001 (Figure 12).

3.8 Data Availability

The meta-analysis was performed in the R statistical computing environment with the metafor
package. The p-curve analysis and variance distribution analysis of the three-level model were
performed with the dmetar package. The remaining R packages were devtools, forestplot, ggplot2,
and readxl. The dataset, R script, and other supplementary materials are available at https://doi.
org/10.17605/osf.io/57sme.
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Fig. 12. Paper is the moderator variable in the meta-regression model.
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4 DISCUSSION

4.1 Independent Variable Operationalizations

Among all the stimulus creation techniques, face distortion produced the largest effect size, fol-
lowed by distinct entities, realism render, morphing, voice distortion, and motion manipulation.
Techniques producing a nonsignificant effect include mismatch, visuo-auditory mismatch, emotion

manipulation, and real-life encounter, though real-life encounter was based on only one paper. Non-
human animal stimuli performed well. Our evaluation of stimulus creation techniques is summa-
rized in Table A2 of the Appendix.

Face distortion was only tested in four of the papers reviewed [Feng et al. 2018; MacDorman
et al. 2009; Mäkäräinen et al. 2014; Schwind et al. 2018]. Nevertheless, it is a promising technique
to explore configural processing theories [Diel & MacDorman 2021].

Distinct entities were used in 46% of significance tests (114 out of 249), more than any other
technique. This creation technique has greater ecological validity than all techniques except—
at least for robots—real-life encounter. However, stimuli in these studies typically varied in body
language, facial expression, familiarity, gaze direction, lighting, perspective, and other aspects.
These potential confounding variables indicate a lack of experimental control, which could limit
the generalizability of the results [Kätsyri et al. 2015; Kätsyri et al. 2019]. This interpretation aligns
with our results. When the moderation analysis was limited to studies using standardized stimuli,
distinct entities produced a nonsignificant effect.

Although morphing produced a large effect size in the meta-analysis, it was nonsignificant for
8 out of 44 effects. Nonsignificance may stem from the choice of endpoint stimuli. Studies that
did not find a UV effect used endpoint stimuli with the same shape, such as a human face and a
matching avatar face [Cheetham et al. 2015; Kätsyri et al. 2019; the same issue arises for realism

render, MacDorman & Chattopadhyay 2016]. By contrast, studies that did find a UV effect used
morphologically different endpoint stimuli to produce a robot-to-human, animal-to-human, or
cartoon-to-real transition [Ferrey et al. 2015; Lischetzke et al. 2017; Palomäki et al. 2018; Sasaki
et al. 2017].

Creating stimuli from insufficiently distinct endpoint images may result in a morphing sequence
with too narrow a range in human likeness to include the uncanny valley part of the graph. For
example, although animals and robots have facial proportions that are atypical for humans, they
are not judged by human standards. Morphing them with human faces may elicit human-specific
processing, heightening sensitivity to those features that still deviate from human proportions,
thus eliciting the UV effect. This effect could not occur if the facial proportions of the low hu-
man likeness endpoint stimuli were already human (e.g., human avatars). Thus, it is possible that,
for morphing stimuli to elicit a UV effect reliably, they must distort an entity’s configural pat-
tern, which would support theories predicting the UV effect results from configural processing
[Chattopadhyay & MacDorman 2016; Diel & MacDorman 2021; Kätsyri 2018].

Alternatively, the large effect sizes for endpoint stimuli that differ greatly in their morphology
may be an unintended consequence of the creation technique. Endpoint stimuli like robots and
dolls tend to be attractive because they are the product of design. Human beings, though not
designed, tend to find each other attractive because their faces and bodies co-evolved with their
perceptual and hormonal systems. In this context, attractiveness serves a purpose: It supports
mate bonds and parental bonds [see Kozak et al. 2013; Wyman et al. 2011]. However, intermediate
stimuli in a morphing sequence neither evolved nor were designed to be perceived as anything.
This arbitrariness could heighten their uncanniness.

We advise researchers to avoid using similar endpoint images when creating stimuli through
morphing, or to use such techniques as morphing different regions of the face in different
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morphing steps [Seyama & Nagayama 2007]. However, it is also important to avoid creating
strange or ghostly artifacts that could appear eerie for reasons other than their being interme-
diate in human likeness [discussed in MacDorman & Chattopadhyay 2016]. The effect of endpoint
stimulus choice on the UV effect is a topic for investigation.

In their review, Wang, Lilienfeld, and Rochat [2015] found evidence against the UV effect comes
from studies using distinct entities, while evidence for the UV effect comes from studies using
morphing. The reason is perhaps that Wang and colleagues cited studies our analysis excluded for
not using a test statistic [Hanson et al. 2005] or for having image noise [e.g., one face with two
sets of hair, Seyama & Nagayama 2007]. In addition, several distinct entities studies with supportive
results were published after their review [Brink et al. 2017; Jung & Cho 2018; Kätsyri, de Gelder,
& Takala, 2019; Mathur & Reichling, 2016; Mathur et al., 2020; Palomäki et al., 2018; Strait et al.,
2017].

Finally, Wang, Lilienfeld, and Rochat [2015] criticize using face distortion as an independent
variable because face distortion differs from human likeness. However, our review found face dis-

tortion can elicit UV-specific subjective experiences [e.g., Mäkäräinen et al., 2014]. Moreover, our
meta-analysis found a significant UV effect in perceiving animal stimuli [e.g., Löffler et al., 2020;
Schwind et al., 2017, 2018]. Thus, human likeness alone cannot predict the range of observed UV
effects. A more encompassing DV conceptualization, like norm deviation, would predict a broader
range of UV effects. However, norm deviation is not necessarily uncanny. Sometimes it enhances,
rather than harms, the aesthetics [e.g., supernormal stimuli, Diel & MacDorman, 2021].

4.2 Dependent Variable Operationalizations

The effect size of the uncanny valley’s human side was more than double that of its nonhuman
side. This difference may seem to reflect Mori’s graph because the second peak is higher than the
first. However, we also noted that, among all measures, positive affect produced the largest effect
sizes for the human side and the smallest for the nonhuman side. Thus, another explanation is that
positive affect is a poor measure of the UV effect.

Setting aside the miraculous and the extraterrestrial, people tend to perceive human beings as
superior to nonhuman entities. This applies to stimuli appearing in UV experiments to date, such
as robots, animals, and dolls. Perceived limitations in present-day human artifacts or other species
reinforce our ingroup bias, rooted in our common identity, to privilege the human [MacDorman
& Entezari, 2015; Mitchell et al., 2011a]. Humans are often seen as more appealing, attractive,
friendly, likable, pleasant, reassuring, and warm than nonhuman alternatives, not to mention more
cultured, intelligent, and sociable. We can immediately see why positive affect measures are poor
for measuring the UV effect because, despite how uncanny an android may appear, it will still
appear more lifelike and less unfamiliar than a mechanical-looking robot of a novel design. Thus,
it is important to focus on effective measures for the uncanny valley’s nonhuman side: negative
affect measures and positive indirect measures.

The effectiveness of negative affect measures like eerie, creepy, threatening, and disgusting align
with the view that the UV effect is characterized by a distinctive experience of uncanniness rather
than an overall decrease in positive affect [e.g., Ho, MacDorman, & Pramono, 2008; Mangan,
2015; Redstone, 2013]. This negative experience may still reduce positive affect, though indirectly
[Patrick & Lavoro, 1997].

The most frequently used item was eerie [e.g., Ho & MacDorman, 2010, 2017; Kätsyri et al. 2019].
Other negative items included creepy, disgusting, repulsive, strange, threatening, and weird. Concor-
dantly, positive items with the largest effect sizes were nonspecific, such as interpersonal warmth

items (likable, pleasant) or familiar [e.g., MacDorman & Ishiguro 2006]. Despite a correlation
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between the UV effect and feelings of disgust [e.g., Ho, MacDorman, & Pramono, 2008; MacDor-
man & Entezari 2015], the item repulsive was nonsignificant.

Among indirect measures, dislike frequency produced the largest effect size, followed by cate-

gorization RT, like frequency, avoidance, viewing duration, preference choice, and preferential look-

ing. Indirect measures, such as performance measures, are not without their limitations. Although
some researchers use performance measures to quantify a construct related to, but distinct from,
the UV effect, other researchers claim they measure the UV effect itself [e.g., Lewkowicz & Ghaz-
anfar 2012; Matsuda et al. 2015]. Measures like preferential looking and preference choice reflect
general avoidance behavior, which could be elicited by the UV effect or by extraneous factors
that must be controlled for, such as an ugly appearance or inhospitable disposition. Furthermore,
most studies measuring performance omitted affect. Those that measured it tended to find a UV
effect for affect but not for performance [Strait et al. 2015; Strait, Urry, & Muentener 2019; for the
opposite case, see Wang & Rochat 2017].

These findings point to broader issues with measurement in UV research: First, many studies do
not measure affect, but they should endeavor to do so insofar as it is possible. It is better to avoid
relying solely on task performance measures [e.g., categorization RT, Cheetham, Suter, & Jäncke
2011; Cheetham et al. 2013; Cheetham et al. 2014; Chen et al. 2010; Saygin et al. 2012; avoidance or
preference, Lewkowicz & Ghazanfar, 2012; Matsuda et al. 2012; Steckenfinger & Ghazanfar 2009].
The reason is that we cannot infer affect and its influence on motivation solely from nonaffective
behavior, though we can code it from displays of emotion. For example, in a study that used ter-

mination frequency to measure the UV effect, “the stimulus was boring” had a larger effect size
than “the stimulus was unnerving” [Strait et al. 2015; Strait et al. 2019]. However, boring has never
been considered the dependent variable in Mori’s graph. In addition, task performance measures
can diverge from affect measures [MacDorman & Chattopadhyay 2016, 2017; Mathur et al. 2020].
Research should aim to validate performance measures by testing their specificity for the UV effect.

Second, although likability, pleasantness, and other nonspecific items used to measure overall af-
fect tend to correlate with UV-specific items, they do not capture the experiential quality of the UV
effect. Thus, unrelated factors could cause them to increase or decrease. This makes nonspecific
items more susceptible to confounding variables. Perceptual variables that can influence stimu-
lus evaluation include attractiveness [Ho & MacDorman 2010, 2017; Principe & Langlois 2011],
atypical [Kätsyri et al. 2015; Strait et al. 2017], disgusting [Curtis et al. 2011], or misaligned fea-
tures [MacDorman & Chattopadhyay 2016], background [Łupkowski et al. 2019], color [Kennedy
2014; Valdez & Mehrabian 1994], morphing artifacts [MacDorman & Chattopadhyay 2016], realism
[McDonnell et al. 2012], and size [Cesarei & Codispoti 2006]. These variables tend to be automatic
and stimulus-driven. Perceptual-cognitive variables include categorization difficulty [Cheetham
et al. 2013; Yamada et al. 2013], expectation violation [Saygin et al. 2012], frequency [Burleigh
& Schoenherr 2015; Moreland & Zajonc 1982], inhibitory devaluation [Ferrey, Burleigh, & Fenske
2015; Weis & Wiese 2017], and multimodal mismatch [Mitchell et al. 2011b; Tinwell et al. 2015]. So-
cial variables include animacy [Koldewyn et al. 2014; Mäkäräinen et al. 2014], context [Jung & Cho
2018], facial expressions [Paulus & Wentura 2015; Tinwell et al. 2011], mind perception [Gray &
Wegner 2012], narrative structure [MacDorman 2019], outgroup membership [Hugenberg 2005],
and perceived warmth or competence [MacDorman 2019]. Thus, studies should include UV-
specific measures to mitigate potential confounds.

Third, even when UV-specific measures are used, they can be influenced by the flow of the
interaction and its narrative structure [Dai & MacDorman 2018]. Thus, it may be necessary to test
for the UV effect before the interaction begins.
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Fourth, the UV effect is correlated with fear, anxiety, and disgust [Ho, MacDorman, & Pramono
2008]. Thus, a UV measure should be able to discriminate UV stimuli from non-UV stimuli that
elicit similar emotions. However, discriminant validity has not yet been demonstrated for a UV
measure.

Fifth, regardless of the strength of a change in affect, at least three stimulus conditions are
necessary to produce measurements that could fit a U-shaped curve—the valley part of Mori’s
graph. Even if those measurements fit, a dip in a measure like interpersonal warmth could occur
for a myriad of reasons other than the UV effect. Thus, experimental control is vital.

Sixth, what eeriness is and which situations elicit it has not been specified precisely. Redstone
[2013] proposed that eeriness is elicited when the ontological nature of a stimulus is unclear. Langer
and König [2018] differentiate between eeriness (which they assert is a fear-related response to
humanoid entities) and creepiness (an anxiety-related response to novel or unpredictable people or
situations). However, these claims are untested. In general, UV research lacks a common definition
and conceptualization of the UV effect.

4.3 Limitations

4.3.1 Study Exclusion. This meta-analysis excluded a wide range of impactful UV studies that
were not intended to replicate a UV curve. For example, Gray and Wegner [2012] found the UV
effect was elicited by the perception of a conscious machine or the philosophers’ zombie (a per-
son lacking conscious experience). Their findings were replicated by Appel and colleagues [2020].
Schein and Gray [2015] found that, among facial features, the UV effect was especially sensitive
to the manipulation of the eyes. The review also excluded specific subgroups and nonhuman pri-
mates. For example, Steckenfinger and Ghazanfar [2009] found a UV effect in macaque monkeys.
The meta-analysis also excluded studies on the neurophysiological correlates of the perception of
humanlike appearance or behavior, which shed light on the neural mechanisms underlying the
UV effect [e.g., Saygin et al. 2011; Urgen et al. 2018].

The meta-analysis excluded interaction effects for simplicity. However, these effects have eluci-
dated the UV effect. For example, Green and colleagues [2008] found an interaction between the
degree of face distortion and realism render by showing that sensitivity to acceptable facial pro-
portions increased as the stimulus appeared more human. Similarly, Mäkäräinen and colleagues
[2014] showed that the strangeness of faces with exaggerated expressions increased as faces were
rendered more realistically. Both studies indicate realism increases the perceiver’s sensitivity to
human features. Thus, deviations from norms are more likely to be noticed and perceived as un-
canny in realistic representations. Sensitivity increases with realism logistically (S-shaped curve),
not linearly, indicating a perceptual magnet effect [Chattopadhyay & MacDorman 2016] like the
one found for animacy [Looser and Wheatley 2010]. In a similar vein, Deska and colleagues [2017]
found that the perception of a mind occurs when a face appears nearly human and is processed
configurally [cf. Gray & Wegner 2012; Tinwell et al. 2013].

Smaller studies, which require a larger effect size to obtain significance, tended to have larger
effect sizes in our meta-analysis. Specifically, the average effect size of smaller studies, those in the
quartile with the largest standard errors, was more than double that of the other three quartiles.
Typically, inflated effect sizes in smaller studies are explained by publication bias or p-hacking.
Publication bias results from unpublished or unreported nonsignificant effects missing from a
meta-analysis, and p-hacking is the failure to control for multiplicity in significance testing. How-
ever, p-curve analysis found no signs of publication bias or p-hacking.

Twenty-six of 98 studies that met selection criteria, including significance testing, were excluded
from the meta-analysis because they provided insufficient information to calculate effect sizes. This
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issue arose mainly for nonsignificant effect sizes. Nevertheless, the field has shown interest in non-
significant and contrary effects, and papers reporting them have been well-cited [e.g., Cheetham
et al. 2014; Thompson et al. 2011]. Because this paper focuses on comparing methodologies, bias
affecting relative comparisons between effect sizes is more worrisome than bias affecting their
absolute magnitude.

4.3.2 Diverse Methodologies. The diversity of UV methodologies impeded the meta-analysis.
The volume of IV–DV combinations complicated the interpretation of effect sizes for creation
techniques and for measures, especially for IV–DV combinations used in only a few studies. Pre-
cision in meta-regression requires having enough combinations in each cell. At least five is one
rule of thumb [Borenstein et al. 2009]. However, three of ten techniques, 23 of 39 affect measures,
and 12 of 14 indirect measures were used in fewer than five studies. The variety of experimental
designs and other study-specific variables also complicates interpretation of the results. To draw
conclusions about techniques and methods simultaneously requires enough significance tests or
effect sizes to make comparisons [Lay et al. 2016]. Future research could give priority to the vali-
dation of rarely used methods.

5 CONCLUSION

This is the first meta-analysis on the UV effect. We used meta-regression to evaluate the methods
used to operationalize the axes of Mori’s graph. Our findings provide a methodological founda-
tion for UV research. After discussing the conceptual foundations of the uncanny valley, we have
presented successful research methodologies and raised methodological concerns.

5.1 Recommendations

We end by proposing the following design principles for stimulus creation techniques and mea-
sures in UV research:

Items that measure the UV experience as a distinct experience of uncanniness, such as uncanny

and eerie, or of strangeness, such as weird or strange, are preferred to nonspecific items. They also
have face validity. In this vein, negative items are preferred to positive ones. Negative items can
always be reverse scaled to plot the valley.

Affect or preference measures are necessary to assess the UV effect. Although indirect measures
may complement them, a study should not rely solely on indirect measures, if possible. The validity
of performance measures warrants further investigation.

The stimulus creation techniques producing the largest effect sizes were face distortion, distinct

entities, realism render, and morphing.
A drawback of morphing is that, if the endpoint images are too similar, the x-axis may not

include the uncanny valley. Morphing that disrupts the configural pattern may produce a larger
effect; however, it should avoid creating visual artifacts from the morphing process. How best to
employ morphing is a topic for future research.

Useful stimulus creation techniques include distorting facial features, rendering at different re-
alism levels, and using different emotional expressions. Their choice depends on theoretical con-
siderations and the research question. Further investigation is needed on realism rendering and
how it influences UV-specific negative measures compared with nonspecific positive measures.

When using distinct entities, researchers should apply standards for stimulus selection (e.g., sim-
ilar size, perspective, facial expression, and lighting). The effect of stimulus standardization on the
UV effect also warrants investigation.
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APPENDIX

Table A1. Indices and Cronbach’s α ’s of UV Studies

Authors reference
number [study
no.] Indices: separate scales

UV effect
significance?

Cronbach’s α
per condition

Stimulus creation
technique

Bartneck et al.
[2009a]

Likability: awful–nice, unfriendly–friendly,
unkind–kind, and unpleasant–pleasant

No .92, .88, .84 Real-life encounter

Destephe et al.
[2015]

Eeriness: eerie–reassuring, freaky–numbing,
supernatural–ordinary,
spine-tingling–uninspiring, thrilling–boring,
mortal–predictable, uncanny–bland, and
hair-raising–unemotional

Yes .85 Motion manipulation

Ho & MacDorman
[2017]

Eeriness: dull–freaky, predictable–eerie,
plain–weird, ordinary–supernatural,
boring–shocking, uninspiring–spine-tingling,
predictable–thrilling, bland–uncanny, and
unemotional–hair-raising

Yes .86 Distinct entities

Ho & MacDorman
[2010]

Eeriness: reassuring–eerie, numbing–freaky,
ordinary–supernatural, and
uninspiring–spine-tingling

Yes .74 Distinct entities

Warmth: cold-hearted–warm-hearted,
hostile–friendly, spiteful–well-intentioned,
ill-tempered–good-natured, and grumpy–cheerful

Yes .88

Kätsyri,
Mäkäräinen, &
Takala [2017]

Likable: likable, aesthetic, and pleasant No .90 Distinct entities

Eerie: eerie and unsettling No .70

Eerie: eerie, unsettling, and strange No .64

Lischetzke et al.
[2017]

Index: creepy, eerie, and uncanny Yes .92 Morphing

MacDorman &
Chattopadhyay
[2016]

Eeriness: ordinary–creepy, plain–weird, and
predictable–eerie

No N.A. Realism render

Warmth: cold-hearted–warm-hearted,
hostile–friendly, and grumpy–cheerful

No N.A.

Mitchell et al.
[2011b]

Eeriness [see Ho & MacDorman, 2010] Yes .70 Visuo-auditory
mismatchWarmth [see Ho & MacDorman, 2010] Yes .88

Rosenthal–von der
Pütten & Krämer
[2014]

Threatening: threatening, eerie, uncanny,
dominant, and harmless

Maybe .89 Distinct entities

Likable: pleasant, likable, attractive, familiar,
natural, and intelligent

Maybe .83

Submissive: incompetent, weak, and submissive No .66
Unfamiliar: strange and unfamiliar No .67

Schwind et al.
[2018]

Familiarity: uncanny–familiar and
freaky–numbing

Yes N.A. Distinct entities (cats)

Aesthetics: ugly–beautiful and
unaesthetic–aesthetic

Yes N.A.

Shin, Kim, &
Biocca [2019]

Eeriness: reassuring–eerie, numbing–freaky, and
ordinary–supernatural

Yes .76 Realism render

Stein & Ohler
[2018]

Eeriness (n.a.) Yes .74 Emotion
manipulation, face
distortion, realism
render,
visuo-auditory
mismatch

Tinwell et al.
[2013]

Uncanniness: eerie, nonhumanlike, repulsive,
unattractive, unlikable, and unresponsive

Yes .74, .80, .80 Emotion
manipulation

(Continued)
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Table A1. Continued

Authors
(reference
number) [study
no.] Indices: separate scales

UV effect
significance?

Cronbach’s α
per condition

Stimulus creation
technique

Tung [2016] [1][2] Social attraction: friendly, likable, and pleasant Yes [1]
No [2]

≥ .70 Distinct entities

Złotowski et al.
[2015]

Eeriness (n.a.) Yes .62 (lowest of
three mea-
surements)

Real-life encounter

Note. Eeriness and Warmth denote the indices developed by Ho and MacDorman [2010, 2017] and their derivations. We did
not find studies with information on correlations between individual scale items.

Table A2. Summary and Evaluation of Stimulus Creation Techniques

Stimulus creation
technique Exemplar studies Advantages Disadvantages

Further
considerations

Distinct entities Mathur et al.
[2020]
Rosenthal–von
der Pütten &
Krämer [2014]

Relatively high
ecological
validity, variable
stimulus control,
easy access

Confounding
variables, no
gradual range

Additional control
when selecting
stimuli can decrease
confounding variables

Emotion
manipulation

Tinwell et al.
[2014]

Specific,
controllable
stimulus
manipulation

Stimulus noise

Face distortion Mäkäräinen
et al. [2014]
MacDorman
et al. [2009]

Controllable
stimulus
manipulation,
gradual range

Stimulus noise Strength of distortion
should have a
sufficient range

Morphing Lischetzke et al.
[2017]
Sasaki, Ihaya, &
Yamada

Controllable
stimulus
manipulation,
gradual range

Results depend
on endpoint
stimuli choice,
Stimulus noise

Endpoint stimuli
should be sufficiently
distinct

Mismatch Seyama &
Nagayama
[2007]

Controllable
stimulus
manipulation

Stimulus noise,
no gradual range

Selection of
mismatched features
(e.g., eyes)
Lack of research

Motion
manipulation

Handzic & Reed
[2015]

Lack of research

Realism render McDonnell et al.
[2012]
MacDorman &
Chattopadhyay
[2017]

Controllable
stimulus
manipulation

Stimulus noise

Real-life encounter Złotowski et al.
[2015]
Bartneck, Kanda,
Ishiguro, &
Hagita [2009]

High ecological
validity for
android science

Low internal
validity, difficult
setup and
stimulus
acquisition

Android/robotic and
human counterpart
stimuli should match
Lack of research

Visuo-auditory
mismatch

Mitchell et al.
[2011b]

Lack of research

Voice distortion Baird et al.
[2018]

Lack of research
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