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Socially assistive robots have the potential to improve the quality of life of older adults by encouraging and guiding their
performance of rehabilitation exercises while offering cognitive stimulation and companionship. This study focuses on the early
stages of developing and testing an interactive personal trainer robot to monitor and increase exercise adherence in older adults.
The robot physically demonstrates exercises for the user to follow and monitors the user’s progress using a vision-processing
unit that detects face and hand movements. When the user successfully completes a move, the robot gives positive feedback and
begins the next repetition. The results of usability testing with 10 participants support the feasibility of this approach. Further
extensions are planned to evaluate a complete exercise program for improving older adults’ physical range of motion in a controlled
experiment with three conditions: a personal trainer robot, a personal trainer on-screen character, and a pencil-and-paper exercise
plan.

1. Introduction

1.1. Benefits of Humanoid Robots to Older Adults. The pro-
portion of adults aged 65 or older has been steadily increasing
for more than a century in most developed countries. In
the USA, it has increased from 4.1% (3.1 mil.) in 1900 to
8.1% (12.6 mil.) in 1950 to 12.4% (34.6 mil.) in 2000 and
is projected to reach 20.6% (82 mil.) in 2050 [1]. This steep
increase raises the concern of where older adults will live. A
1992 study found most of them prefer “aging in place,” that
is, remaining in their homes with little or no supervision
[2, 3]. Although aging in place has some advantages, like
increased autonomy and maintaining familiar surroundings,
one potential disadvantage is fewer opportunities for receiv-
ing encouragement to engage in physical activity.

Physical activity may delay the onset of physical deficits
contributing to frailty. These deficits include decreased skele-
tal muscle strength, gait speed, musculoskeletal flexibility,
range of joint motion, postural stability (including balance,
coordination, and reaction time), and cardiovascular respon-
siveness [4]. These conditions result in significant functional
limitations. For example, 15% of people aged 75 to 84 are

unable to climb stairs, and a substantial proportion of other-
wise healthy older adults have limitations in gait speed that
prevent them from crossing an intersection quickly enough
to comply with traffic signals [4, 5]. Increased physical
activity, such as through a daily exercise program, has been
found to reduce physical ailments and improve strength and
mobility [5–7]. However, exercise programs are beneficial
only when followed regularly and consistently; living con-
ditions and other factors may impede program adherence
[8–11]. For instance, older adults living at home typically
have reduced access to healthcare and health interventions as
compared with those living under long-term care at a nursing
home [12]. Furthermore, employing live-in-care staff can be
expensive. Without the supervision and encouragement of
nursing staff, stay-at-home older adults are at an increased
risk of not adhering to an exercise program [13].

Another potential disadvantage of aging in place as
compared with group living facilities is fewer opportunities
for regular, meaningful interpersonal relationships. Com-
panionship has important health benefits for older adults
who age in place. For example, living together with another
person significantly decreases feelings of loneliness in older
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adults [14]. When human companionship is unavailable, an
animal or robot companion can reduce feelings of isolation,
in part by giving a sense of physical and social presence
[15–17]. An animal companion positively impacts the health
of socially isolated individuals and can produce long-term
positive effects on the health and behavior of older adults
[18, 19]. When a companion animal is not feasible, a robot
may be substituted; this has the benefits of lower recurring
costs, a lower burden of care and responsibility, and greater
hygiene. Robots have elicited similar palliative outcomes
when substituted for a companion animal [20–22].

However, few studies have been conducted on how to use
robots or robot therapy to improve the mental and physical
health or quality of life of older adults [20–24]. To close
this research gap, the field of socially assistive robotics has
emerged. Socially assistive robots have been used in certain
contexts to aid recovery through social interactions [25].
The robot’s interaction style may be informed by the human
user’s personality [26], movement, or physical orientation
[27].

Socially assistive robots can be relatively inexpensive and
simple to use. Paro [15, 28], for example, has been used in
nursing homes in Japan, the United States, and Europe for
companionship and to stimulate social interaction among
patients [17, 20, 22]. Paro, which looks like a baby harp seal,
is designed to provide therapy for older adults with dementia.
Its sensors enable it to respond to both touch and speech in a
manner resembling a domesticated animal companion.

Although Paro’s cognitive capacities are extremely lim-
ited relative to those of people, animal pets, and even other
robots, nonverbal cues such as looking toward the person
speaking or responding to being petted can convey a sense of
physical and social presence that in turn reduces loneliness
and encourages the sharing of feelings [17]. Paro and other
similar robots may provide comfort by giving the impression
that “somebody is there.” They succeed to the extent that
they are able to “press our Darwinian buttons” by mimicking
largely unconscious human and other animal behavior that
elicits in their users prosocial behavior, such as the human
desire to nurture and be nurtured [16]. Paro’s success as
a companion robot may result from its anthropomorphic
appearance, and especially the inclusion of eyes, a conclusion
supported by the findings of several unrelated experiments
[29–31]. In particular, these findings support the theory
that human beings have inherited an automatic, unconscious
neural mechanism that conferred on their ancestors’ selective
advantage by increasing prosocial behavior when being
observed. Thus, interactive technologies can be engineered
to exploit unconscious mechanisms to promote adherence to
a physical exercise program or to any other kind of activity
supported by social expectations.

An advantage to humanoid robot companions is that
not only can they be endowed with social intelligence but
their appearance also affords the automatic perception of
them as socially intelligent. Thus, when robots look, act, or
are presented as humanlike, social entities, they are more
likely to elicit in us the same responses that other human
beings elicit [32]. This effect has been measured by the

human interaction partner’s conscious behavior, uncon-
scious behavior (e.g., gaze) [33], attributions of thoughts,
feelings, and intentions, and adherence to advice [34, 35].
The anthropomorphic physical embodiment of a humanoid
robot could have a significant effect on patients’ adherence
to a physician-prescribed exercise program. Shinozawa et
al. [34] found that participants are more likely to follow a
robot’s recommendation than that of an on-screen character.
Kidd and Breazeal [35] found that participants track their
exercise and calorie consumption for almost twice as long
with a robot as with a computer or with paper and pencil.
They also develop a closer relationship with the robot.

1.2. Affordable Interactive Exercise Systems. Despite the devel-
opment of technologies for rapidly and robustly detecting
human faces and hands, only recently have these technolo-
gies been applied to monitoring exercise performance and
providing feedback [36]. Systems have been developed that
demonstrate exercises [37] or provide feedback and encour-
agement for performing stroke rehabilitation exercises [38,
39] or completing mental and physical button-pressing
tasks [40]. In 2011, Respondesign MayaFit Virtual Fitness
Trainer [41], implemented on the PrimeSense OpenNI
Framework, combines exercise adherence monitoring with
an animated on-screen human-looking character to guide
healthy individuals through a personalized sequence of
exercise movements, monitor their progress, and provide
feedback. (MayaFit uses the same three-dimensional motion
capture technology as Microsoft’s Kinect [42].) However,
these are examples of specialized hardware and software. It
should be possible to encourage exercise with more afford-
able, mass-produced devices [43].

In summary, older adults, especially those aging in place,
are subject to physical and mental problems that drastically
diminish their quality of life [44]. To reduce these problems,
an interactive system could instruct, monitor, and encourage
older adults during the performance of physician-prescribed
exercises. Such a system would offer a combination of distinct
advantages as compared with the usual paper-and-pencil-
based materials or an automatic telephone reminder system.
The interactive system performs the exercises in front of the
participant; the system provides continuous instant feedback
and encouragement during the exercises; the system provides
a more affordable substitute for a human personal trainer;
the system provides exercise guidance at flexible times; the
system can increase adherence by presenting itself as a hu-
manlike, social entity; the system can report the results back
to the physician.

Interactive technologies can present their humanlike
agency through the virtual embodiment of an on-screen
character or through the physical embodiment of a hu-
manoid robot. Each approach has its advantages. The
advantages of an on-screen character, which requires only
a computer, a video camera with a fixed focal length (i.e.,
a webcam), and software, are numerous: low purchase and
maintenance costs, high portability (for notebook computer
models), high reliability (as compared with robots, which are
animated by motors that can jam and break), and the absence
of safety risks related to physical contact (e.g., fingers pinched
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by a robot joint) [45]. The advantages of an interactive
robot are likewise numerous: the robot has heightened
sociality because of its enduring anthropomorphic and
physical presence, which is likely to increase adherence to
treatment including exercise [34, 35]; even simple robots
can provide a sense of companionship [16, 17]; robots
often have mobility, which enables them to navigate their
environments autonomously [23, 46], and thus can be
designed to accompany their owners on walks; it is easier to
see and understand exercises performed in three dimensions
by a robot than in two dimensions by a character on a screen
because the former affords depth perception by binocular
disparity and movement parallax.

2. Prototype Interaction Design and
System Design and Implementation

The long-term goal of this research is to increase adherence
among adults aged 65 or older to a physician-prescribed
exercise program through their interaction with a personal
trainer robot in their own homes. This technology is
intended for older adults who have a sedentary lifestyle. The
fully developed system should be inexpensive, communicate
with older adults in real time, and report the results to their
physicians through a hospital webserver.

The humanoid robot in this study has been designed
to start an exercise session with users and help them
adhere to a predetermined schedule. When the user is
ready, the robot demonstrates the first prescribed exercise
by moving its body parts. If the user performs the exercise
correctly, the robot praises the user and begins the next
repetition. To communicate with the user, the robot uses
synthesized speech in addition to the gestures that depict
each exercise movement. The robot also recognizes hand and
head movements to monitor the user’s progress through the
exercise set and to estimate the user’s activity level (Figure 1).

2.1. Software Components of Personal Trainer Robot Prototype.
The software is composed of a vision-processing unit and an
exercise adherence unit, which communicate with each other
to determine and carry out the next move of the robot. The
interactive prototype detects the users’ physical presence and
recognizes the users’ gestures (i.e., the exercise movements).
It determines whether the user has successfully performed
the exercise move as demonstrated by the robot. Next, the
exercise adherence unit obtains the tracked head and upper
arm positions from the vision-processing unit and delivers
the appropriate voice commands accordingly (Figure 2).

2.1.1. Vision-Processing Unit. The vision-processing unit
uses a wide-angle USB video camera. The camera captures
the video, which is then processed in its native size. The
system sets two different regions of interest (ROIs) to indicate
the most likely location for features: one for the face and the
other for the hands. The face and hand detection are then
performed in their respective ROIs.

The user is encouraged to sit at a certain distance from
the camera so as to be positioned at the center of the video

Performing exercises

Interaction loop

Demonstrating the
exercise routine

Figure 1: An interaction loop links the older adult user and
the personal trainer robot. Within this loop, the robot leads the
user through each exercise move by physically demonstrating it
and giving encouragement and feedback on the user’s adherence
through synthesized speech.
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Interactive robotic
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Text-to-

Figure 2: Information flows from the vision-processing unit, which
monitors the user’s movements, to the exercise adherence unit. The
exercise adherence unit controls the robot’s performance of each
exercise move and, after the user completes (or fails to complete) the
move, reports the adherence assessment. The interactive framework
used in this study is shown in Figure 7.

frame. The optimal distance is determined by the user’s
height. Initially, the user is encouraged to perform trial
exercise moves in front of the camera to check whether the
user in the raised-hands position fits within the video frame.
Lighting conditions consistent with a well-lit room should be
maintained throughout the process so that enough light falls
on the face and hands for accurate detection.

2.1.2. Face Detection and Tracking. Face detection is a part of
object recognition research [47], and much work has been
conducted on it since the inception of vision processing.
Turk and Pentland [48] developed an automatic recognition
system based on eigenfaces that compares the features of
novel faces to already known faces. Liu [49] applied Bayesian
discriminating features to frontal face detection, while
Mohan et al. [50] devised an example-based algorithm. Viola
and Jones [51] used machine-learning techniques and Haar-
like features for rapid, accurate face detection and later added
a set of tilted Haar-like features to enhance detection [52].
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The current study builds on previous research by using
classifiers with an extended set of Haar-like features, includ-
ing edge, line, and center-surround features for rapid face
detection and localization [51, 52]. The Haar-like features
test for a face in the face ROI of each frame. A cascade of
classifiers was employed to increase the detection rate. Once
detected, the face is extracted within a bounded rectangular
region, and the centroid of the rectangle is computed and
continuously tracked.

Haar face and hand classifiers were created through a
training process using the OpenCV library. Training a Haar
classifier is a CPU time- and memory-intensive process that
requires sample images of the object of interest (positive
images) and of other objects (negative images). To improve
classification accuracy, a 20-stage cascade of Haar classifiers
was trained with the Gentle AdaBoost algorithm [53] using
5,000 positive and 6,500 negative images. The training
required 18 days and was performed on a PC with an Intel
Pentium 4 (2.2 GHz) processor and 2 GB of RAM.

To improve the system’s classification accuracy, the user
is positioned at the center of the video frame. Because users’
heights in this study varied between 165 and 188 cm, they
were first asked to sit in front of the camera so that the
approximate regions of the face could be calculated and an
ROI could be obtained. Based on these calculations, the face
ROI origin point was set 200 pixels to the right and 100 pixels
down from the top-left corner of the original frame (i.e., x =
200 and y = 100). An ROI 340 pixels wide by 300 pixels tall
was then created with its top left corner at the face ROI origin
point. Presetting the ROI increases the efficiency and the
accuracy of the system because it provided a smaller area in
which the face is likely to be found. The region was cropped
and displayed in a separate window. The face detection
system searched the entire region for a face by repeatedly
applying the cascade of Haar classifiers in the Haar-like
feature space. After locating a rectangular area containing
a face, the system returns the coordinates of its centroid
and four corners and tracks the face in that area. Thus, the
movements of the face are continuously monitored, and the
coordinates are stored in memory for future reference. The
calculation of the centroid enabled the tracking of even small
movements of the head, thereby increasing the sensitivity and
effectiveness of the system.

2.1.3. Upper-Limb Motion Detection and Tracking. The Haar-
like features and Haar classifiers that were used for face
detection were initially applied to hand detection. However,
because hand gestures are often more complex than those
made by the head and face (i.e., because the hands can
be twisted into more physically distinct configurations), the
Haar classifiers were less effective for hand detection than
for face detection and, subsequently, the results could not
be used during real-time video streaming. A more feasible
method of observing hand movements was using motion
detection (Figure 3). The method was reused for detecting
motion in the other parts of the upper limbs, including the
forearms.

Motion Detection. The frames used for vision processing are
captured from the camera. From each of these frames, the
subframe defined by the ROIs is extracted and processed.
An example of one such subframe on which the image
processing is performed is shown in Figure 3(a). Subframes
will contain some noise from the camera sensor, which
should be reduced to avoid false positives (Figure 3(b)).
Applying to the subframe a simple blur reduces this noise.
Once noise is removed, the presence of motion is detected
by calculating the absolute difference in corresponding pixel
values from two consecutive subframes. A new image with
the calculated difference is created, and the difference image
is converted to 8-bit grayscale, so that it is easy to apply filters
(Figure 3(c)). A binary threshold filter is then applied to the
subframe (Figure 3(d)). The presence of motion is defined as
a sufficient difference in pixel luminance values between two
consecutive subframes [54]. In this difference image, white
pixels indicate the presence of motion.

When the position of the object changes between sub-
frames, it produces a shift in darker and lighter pixels: darker
when an object at the location in the first frame disappears in
the second frame, and lighter when an empty location in the
first frame contains an object in the second frame. When the
difference image is converted to grayscale, it becomes easier
to find the differences between the two source images.

To provide visual feedback of upper-limb motion detec-
tion, the ROI is overlaid with equally sized circles, each of
which is bounded by a square. The circles scatter away from
areas where motion is present. For example, if motion occurs
at the bottom of the ROI, the circles will scatter towards
the middle and top. Whenever the total number of changed
pixels in each bounding square exceeds the predefined value
of 100, motion is considered present in the bounding square.

Upper-Limb Tracking. The absence of circles in two large
areas of the ROI indicates the location of the upper limbs.
The upper limbs are tracked by calculating the difference
between the centroids of the two corresponding rectangular
areas in consecutive frames.

Determining the Upper-Limb Region of Interest. For detecting
motion in the upper limbs, an ROI was obtained by a
method similar to the one used for calculating the ROI for
face detection, namely, by observing several users making
the motion, which in this case was raising their hands. An
assumption was made that the location of the hands would
provide sufficient information about the location of the
corresponding forearms. On that assumption, the ROI for
the hand region was obtained by observing the raised hands
of several users. The hands ROI origin was set 100 pixels to
the right of the top-left corner of the frame. An ROI subframe
400 pixels wide and 200 pixels tall was then created with its
top left corner at the hands ROI origin point.

2.1.4. Exercise Adherence Unit. The exercise adherence unit
monitors data from the vision-processing unit and plays the
appropriate voice commands.

The communication of the robot is controlled by a pro-
gram developed using the robot’s software development kit
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Figure 3: During motion detection, subframes within the region
of interest are captured (a), blurred (b), and converted to shades
of gray (c). In the areas of the subframe indicated by circles, the
pixels changing between consecutive captures (d) comprise a direct
measurement of motion. Such pixel changes are repeatedly summed
and compared with a predefined threshold value. At a given time in
a given area, if the threshold value is exceeded, motion is detected.

(SDK). The voice commands delivered by the robot during
interaction were synthesized using AT & T Labs’ Natural
Voices text-to-speech software [55]. These voice commands
are incorporated into the software system and synchronized
with the exercise routines. A connection is made such that
the exercise adherence unit communicates directly with the
vision-processing unit to interact with the user. The exercise
adherence unit receives information about the presence
of a person from the vision-processing unit (Figure 4). If
it detects a user, the robot greets the user and requests
consent to start the exercise routine. The user indicates
readiness by waving one hand overhead. The robot then
starts the interaction cycle by demonstrating the first of
the recommended physical exercise routines. The robot
vocally announces the first exercise movement and then
demonstrates it by moving its body parts. Next, the robot
waits for the user to imitate the movement. The robot
detects the movement, analyzes its timing and form, and
judges whether the user’s action is correct. After a successful
attempt, the robot praises the user; otherwise, it repeats
the movement and instructions. This continues until the
user performs the exercise correctly. At the end of the
interaction cycle, the robot gives verbal feedback on the user’s
performance during the exercise routines. The robot then
provides a goodbye message and ends the session.

The exercise adherence unit demonstrates exercises by
specifying parameters to the robot’s servomotors for each
exercise move: the desired angle for every joint and both the
velocity and number of displacement steps with which the
joint should move to that angle. Two exercise moves were
used in this study: the overhead arm raise and the head turn.

Detecting an Overhead Arm Raise. To calibrate the system,
the robot asks the user to raise the hands as far as possible.
During the overhead arm raise, one repetition is counted
if the user raises the hands at least 90% of that extent. The
success rate is measured by the number of attempts divided
by the number of trials. Range of motion is informally
quantified as the percentage of the maximal arm raise
averaged across all trials.

Detecting a Head Turn. The extent of a head turn is estimated
from the deviation of the face’s centroid from its head-on
position divided by a constant and then taking the arcsine.
The constant is determined empirically after setting up the
system. The exercise adherence unit counts one head turn
if the head is turned at least 45 degrees. If the user is
unable to make a 45-degree head turn after three attempts,
the threshold for a head turn is lowered to the mean of
the maximal angle during the three attempts. The success
rate is measured by the number of attempts divided by the
number of trials. Range of motion is approximated as the
mean degrees the head is turned across all trials, regardless
of whether they were successful.

2.2. Hardware Components of Personal Trainer Robot Pro-
totype. The interactive system has three hardware compo-
nents: the robot, the webcam, and the controller computer.
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Figure 4: In the exercise adherence interaction framework, the
interaction is controlled mainly by the user’s consent to participate.
Consent is requested both before the first exercise and after each
completed exercise.

(a) (b)

(c)

Figure 5: The set of possible exercises is determined by the physical
capabilities of the humanoid robot. The robot’s 20 servo motors
enable the turning movements of the head, waist, and thighs and
joint movements of the limbs.

2.2.1. Humanoid Robot. RoboPhilo, a programmable hu-
manoid [56] robot, has been used in this study. It has
24 available servo channels with up to eight input-output
interfaces. It has 20 servomotors that enable the turning
movements of the head, waist, and thighs and joint move-
ments of the limbs. It can be connected directly to a PC
via an RS-232 serial connection and can be programmed
using its SDK. It can be controlled directly by using the
infrared remote or autonomously by using the SDK. The
robot can be programmed with various exercise movements
(e.g., Figure 5(a), 5(b), and 5(c)). At US$500, RoboPhilo
is relatively inexpensive given the number and mobility of
its joints. At the time of this writing, a complete system
including computer, webcam, and SDK could be purchased
for about US$900.

2.2.2. Webcam. The vision-processing unit can use a video
camera that is either built in or externally attached to the PC.
The testbed uses a Logitech Webcam Pro 9000 USB camera
with a 72◦ diagonal field of view and a maximum resolution
of 1600× 1200 pixels. At that resolution, the video frame rate
was 10 fps. The large field of view simultaneously captures
both the head and hand regions, and the higher pixel count
allows greater precision during motion tracking.

2.2.3. Controller PC. The vision-processing unit, exercise
adherence unit, and robot were controlled by a PC running a
32-bit version of Microsoft Windows XP. The PC had an Intel
Core 2 Duo processor, 4 GB of RAM, and a PCI-based RS-
232 serial port. (A USB–RS-232 adapter could not be used
because it increased the startup time to 15 s, which exceeds
the 10 s interval during which RoboPhilo must receive its
initial response from the PC to avoid halting.)

3. Methods

The quality of the human-robot interaction of the prototype
system was assessed in a diagnostic usability test. The testing
of the interaction was important at this initial stage to
ascertain the participants’ enthusiasm and interest when
interacting with the robot and their perception of the
robot as a potential trainer. This information is essential
to assessing the system’s user friendliness and commercial
viability.

3.1. Procedure. The usability test was conducted in a room
with large windows, overhead fluorescent lights, and lightly
textured off-white walls. The setup conditions enabled the
system to detect the face and hands of the participant
easily. The testing equipment included the robot hardware
unit, video camera, and computer. A chair was positioned
against the wall and facing the robot and the camera. It was
positioned so that the participant would always fit within the
video frame (Figure 6). Other objects in the camera’s field of
view were removed to reduce false positives.

The participants were instructed to sit on the chair and
were introduced to the purpose of the study, the capabilities
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Figure 6: The first author demonstrates a typical position of a
participant in the study.

and limitations of the robot, and the session’s flow of inter-
action. They were cautioned about unexpected and out-of-
sequence occurrences owing to the fact that the testbed was
still in the development and testing stage. The participants
were then asked to watch the robot and repeat its actions
using only hand and head movements. The robot demon-
strated two basic moves to the participants: the overhead arm
raise and the head turn. The interactions were observed, and
feedback was sought from the participants. The interactions
were also video recorded for later analysis. Figure 7 details
the step-by-step procedure of the interaction cycle.

4. Results and Discussion

4.1. Qualitative Results of the Usability Test. The interaction
sequence for seven of the ten participants was conducted
without any technical glitches (Table 1). However, for three
of the participants, the sequence was interrupted. Two
participants failed to comply with the instructions: they
either moved their hands too quickly or did not turn their
head in the same direction the robot turned its head.
The robot failed to detect the raised hands of the third
participant because the hands were outside of the captured
frame. Although the interaction typically took seven to eight
minutes, one interaction took 12 minutes.

Nine of the ten participants assumed that the robot could
listen, understand, and process what they were saying and
respond accordingly. They were reminded not to talk to the
robot, but to communicate with it using hand or head move-
ments. Their attempts at verbal communication indicate that
most users expect an interactive robot to listen and reply to
them in a way that is uniquely appropriate to the direction
and nature of the conversation and situation [56]. The fulfill-
ment of these user expectations is an area for future research.

4.2. Technical Refinements. As expected, the robot was
unable to change its behavior and act according to the
situation when the sequence was altered or disturbed. For
example, in the case of the three participants with whom
the interaction was not smooth, the robot either continued
with its programmed responses regardless of the participants’

reactions or it abruptly ended the sequence. This inconsistent
behavior occurred because the robot has been programmed
to detect threshold values for each of the exercise moves. The
robot waits for the participant to reach before considering
the participant’s attempt as successful. However, in the case
of an unsuccessful attempt by the participant, the vision-
processing unit reported a random value, resulting either
in the robot skipping essential steps in the sequence or in
the termination of the entire sequence. These two errors
were observed with the first two participants, but were fixed
immediately thereafter. The errors did not occur with the
remaining eight participants.

The trained Haar classifier detected multiple faces at
the same time. This was problematic because in some
cases, multiple faces were detected when there was only one
face. Thus, enabling the detection of multiple faces resulted
in more frequent false positives. This occurs because the
classifier identifies as many sets of coordinates as the number
of faces it detects, which results in the termination of the
vision-processing unit. Although multiple face detection was
intentionally implemented, we did not anticipate the prob-
lem of cycle termination. The bug was fixed by restricting the
classifier to detect only one face in the frame and to reject all
subsequent potential faces.

It was also observed that the robot terminated the
interaction if the participants’ response came too slowly
after each exercise demonstration instead of waiting for
the participant to respond. The bug was fixed after the
usability test. Finally, the participants reported feeling that
the robot terminated the program too abruptly after the
exercise routines were completed. The participants reported
that they would have preferred to receive more feedback
about their performance before the robot conveyed the
goodbye message. The exercise adherence unit was modified
to report the percentage of repetitions completed and the
average extent in percentages of the overhead arm raise and
head turn.

5. Conclusion

By 2050, the number of Americans who are 65 or older
is expected to more than double, reaching 82 millions.
These older adults constitute the most sedentary segment of
the US population, and they suffer from the most chronic
conditions that are preventable through exercise. Although
the most convenient and effective means of increasing
exercise adherence among older adults living at home involve
one-on-one monitoring and encouragement, the required
human resources are in short supply and the costs are
prohibitive. Medically, treating chronic conditions that are
preventable through exercise incurs high economic costs for
the afflicted individuals, their families, and for Medicare
or their private health insurers. The loss of mobility can
necessitate additional costs associated with nursing care,
either at home or at a nursing facility. In addition, conditions
preventable through exercise can incur high personal and
social costs, including physical pain and suffering and social
isolation caused by loss of mobility.
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Figure 7: The initial interactive robotic framework is represented by a flowchart. When the vision-processing unit detects the presence of
a user, it signals this information to the exercise adherence unit, which begins the interaction. If the user consents to begin an exercise, the
robot first demonstrates it. Based on information from the vision-processing unit, the exercise adherence unit determines whether the user
has completed an exercise correctly and, if the user has not, give the user an opportunity to be guided through the exercise again.

Table 1: Usability test.

Participants Successful User error Tech. error

10 7 2 1

Presently, no widespread systems exist to measure and
increase adherence to a physician-prescribed exercise pro-
gram with the potential advantages of a humanoid robot,
including enhanced sociality and companionship and the
ability to lead or follow a person by their own locomo-
tion. To address these issues and as a replacement for a
human personal trainer, we have proposed an interactive
framework for a personal trainer robot to remind users to
perform their exercises, to demonstrate the exercises and
provide instruction, to monitor performance progress in real
time, and to provide feedback and encouragement. If an
interaction framework embedded in a robot can increase
exercise adherence, this could greatly reduce healthcare and
nursing costs for the elderly and, by incorporating some
of the abilities of a personal trainer, provide a high return
on investment as compared with other interventions. It
could also enable physicians to reliably and systematically
monitor patients’ adherence to a prescribed in-home exercise
program by uploading data to a hospital webserver.

Using the robot as a personal trainer to empower patients
in making a behavioral change is a relatively new area to
explore. In this study, we conducted a usability test on
an incomplete prototype system. The participants’ initial
response to the personal trainer robot was very positive. They
were receptive and responded favorably to interacting with it.
Valuable feedback was obtained through their interactions,

which led to the implementation of changes to improve the
functionality and usability of the robot.

5.1. Technical Limitations. One of the major limitations of
the study is that the vision-processing software requires good
lighting conditions to detect head and hand movements
accurately. Poor lighting may result in false negatives, and
excessive lighting may result in false positives. Another
limitation is that to obtain accurate results, only one person
can be in front of the camera during the detection process.
A third limitation is that the vision-processing unit must be
reset between users to adjust for differences in height. Finally,
the software does not yet fully allow for tracking actions
outside of the sequence.

5.2. Directions for Future Research. Because this is a proof
of concept study, it has considerable scope for extension.
To make the robot a feasible option to help older adults
increase their physical activity, future research should include
programming the robot to incorporate a complete exercise
program, such as the moves recommended by the US
National Institute of Aging [57]. To validate that this
approach can increase both the exercise adherence and
physical range of motion of older adults as compared with
alternative interventions, an experiment is planned using this
demographic with three conditions: a personal trainer robot,
a personal trainer on-screen character, and a pencil-and-
paper exercise plan.

During usability testing, users suggested an idea to
improve the interaction: the incorporation of more realistic
and timely feedback through voice commands or comments



Journal of Robotics 9

after each step in the exercise routine and after both suc-
cessful and unsuccessful attempts by the user. These voice
messages could be tailored to the particular motivational
needs of the user to increase adherence to physical activity.
A validated methodology for determining what messages are
appropriate for a particular individual is to apply a model
of behavior change, such as the theory of planned behavior
(TPB) [11, 58].

According to TPB, it is possible to change a person’s
behavior by changing that person’s beliefs about behavioral
outcomes, the normative expectations of others, and con-
trolling factors, such as facilitating conditions or barriers
[59]. These in turn elicit positive or negative attitudes toward
the behavior and responses to social pressure. TPB has
been found effective in changing the behavior of patients
with diabetes, inflammatory bowel disease, and obesity in
interactive games [60–62]. The behavior change model could
be used by the personal trainer robot to give encouragement
to a user that addresses that individual’s particular concerns
and priorities. This may prove critical to maintaining
the user’s motivation during long-term interventions. This
interactive robot testbed can also be used in health games and
by the health games community.

Another potential improvement is to train more efficient
hand detection classifiers. For this version, the motion
detection algorithm followed a low-level procedure. How-
ever, training Haar classifiers is a more robust method for
detecting movement relative to motion detection, because
it eliminates false positives from the motion of irrelevant
objects. Using Haar classifiers is a high-level approach. The
human hand can assume a number of positions and subse-
quently training classifiers for detecting hand movement are
not straightforward. One solution, then, is to train multiple
classifiers for the hand and to use them simultaneously [63].
Although using multiple classifiers might adversely affect
processing speed, it may be suitable for use with older
adults who have a restricted range of motion and slower
hand movements, which will increase the detection rate and
accuracy of motion tracking.

Another future direction is the development of an
animated character for this system that will act as a trainer
and substitute for the robot. This will enable the system to
be distributed online rather than physically. An animated
humanoid character, especially one with facial expressivity,
may increase exercise adherence more than the paper-
and-pencil method while costing less for the user than a
humanoid robot. Whether the effectiveness of an animated
character can rival that of a humanoid robot is a question for
future research to address.
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