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1. Grounding symbol systems 

 A prominent robotics professor surprised me at last 
year's RSJ conference: "There isn't really a symbol 
grounding problem for robotics, is there? I often ask 
people, 'Is symbol grounding a problem for your re
search?' and no one says, 'Yes.' " Sensing irony in his 
voice, I replied, "That's because no one is building sys
tems with a human or even vertebrate level of 
competence. When they try to, they may respond to 
your question differently."

Harnad (1990) identified the symbol grounding prob
lem as a problem of embodying symbol systems 

(Newell 1980). Symbol systems are usually comprised of 
a fixed set of elementary symbols and rules for combin
ing them into more complex representations. Symbol 
systems are designed to manipulate these representa
tions according to their constituent structure (i.e., syn
tax) in the hope that these transformation make sense 
semantically. The problem is: How do we causally con
nect a symbol system's internal symbols to the external 
objects, events, and relations they are supposed to rep
resent?

Solving this problem is not simply a matter of 
learning some kind of grounded internal representa
tion in a flexible and adaptable way. We are al
ready building emergent systems that can do that 
(e.g., Uchibe et al. 1998), and artificial neural net
works (Smolensky 1988), reinforcement learning (Sut
ton & Barto 1998), and behavior-based architectures 
(Brooks 1991) offer three popular approaches. But what 
the current generation of emergent systems generally 
lacks are three key aspects of thinking: its systematicity, 
productivity, and inferential coherence. They lack these 
aspects because their underlying methods have been 
unable to deal effectively with constituent structure, 
though more elaborate implementations should over
come this limitation (see, for example, Chalmers 1993).

We tend to think of these aspects of thinking as be
ing typically human. This is probably because they were 
first studied in relation to language (Katz & Fodor 1963; 
Chomsky 1959, 1965). Human thinking is systematic in
sofar as people who can understand one sentence (e.g.,

 John loves Mary) can, in general, understand struc
turally similar sentences (Mary loves John); it is pro
ductive insofar as people can understand and generate 
an unbounded number of sentences; and it is inferen
tially coherent insofar as people are capable of form
ing valid conclusions from valid premises. Nevertheless, 
Fodor and Pylyshyn (1988) have shown that the same 
arguments that have been applied to language under
standing can be extended to belief in general and even 
nonverbal perception and cognition in animals. For ex
ample, it seems reasonable to assume that if a kitten can 
perceive that a ball of yarn is to the left of its mother 
(yLm), in general it can also perceive that its mother 
is to the left of a ball of yarn (mLy). But without con
stituent structure, a robot can't abstract the relation 
L. It can only represent these two different situations 
as two distinct states. Thus, a robot that can recognize 
the first situation may be blind to the second, simply 
because it had no prior experience of it.

If states lack constituent structure, situations cannot 
be decomposed into parts. Thus, to avoid perceptual 
aliasing, every behaviorally distinct situation must have 
its own state. In the above example, if we add a new 
relation (e.g., above), the number of relational states 
doubles: yLm, mLy, yAm, mAy. If we instead add a 
new object, it increases six fold: yLm, mLy, yLx, xLy, 
mLx, xLm, yLmLx, mLyLx, yLxLm, xLyLm, xLmLy, 
mLxLy. A linear increase in the number of basic cat
egories our robot is trying to represent results in an 
exponential increase in the number of states. If we con
sider, for example, the reinforcement learning paradigm, 
this translates into an exponential increase in the time 
it takes for learning to converge, since convergence de
pends on actions being attempted repeatedly in each 
state. But in humans the relationship seems to be the 
opposite. People who know more don't take longer to 
think!

Fodor and Pylyshyn (1988) note two reasons why 
symbol systems are able to simulate systematic, pro
ductive, and inferentially coherent modes of thinking 
(pp. 28-30): (1) The syntax of a representation can en
code its role in inference; and (2) computers can be 
programmed to manipulate representations according 
to their syntax. 

 The basic problem with this arrangement is that 
symbol manipulation depends solely on properties that 
are part of the system's internal workings: how com
puter hardware implements the system's syntactic con-
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straints. But the sensorimotor relation between a 
robot's body and the external environment must be able 
to influence the causal relation between its internal sym
bols and the external state of affairs they represent (see 
also Tani, 1996). Standard artificial approaches have 
failed because they try to set up symbol-object connec
tions in advance by means of a fixed set of feature de
tectors. But outside of sterile laboratory environments 
this doesn't work well. Real environments can change 
unpredictably as can real bodies. This alters what the 
robot can sense and do and how it should 'think': its 
opportunities for interaction and the kinds of sensori
motor invariance available to recognize them. J. J. Gib
son (1979) called these opportunities affordances. To 
illustrate how affordances vary according to body and 
environment, note that while a telephone pole serves 
nicely as a bird's perch (as long as it can fly), it may 
only be an obstacle to an earth-bound robot.

From a cognitive standpoint, traditional symbol sys
tems are unsatisfying because they are nearly inexplica
ble in terms of evolution, neuroanatomy, and psychology 
(MacDorman 1997a, b; Schyns et al. 1998). In addition, 
they create a practical difficulty for their designers, who 
are required to anticipate all the elementary features 
the symbol systems will need to recognize and provide 
them with feature detectors to match. Even if this were 
possible, the computational demands of processing rep
resentations composed from elementary features may 
be prohibitively high (Janlert 1996). Psychological and 
neurophysiological evidence suggest that we can learn to 
recognize large coarse features as well as small detailed 
ones by means of feedback from miscategorization (liar
nad 1987; MacDorman 1997b, 1998; Schyns et al. 1998). 
But the main point is that dynamically changing senso
rimotor relations need to constrain abstract reasoning; 
syntactic constraints are not enough.

2. Parallel processing, conscious integration, 
and the frame problem

In robotics, a symbol system fits roughly in the middle 
of the sense-model-plan-act architecture the part 
where there is symbolic modeling, reasoning, and plan
ning (e.g., Nilsson 1984). Rodney Brooks (1991) took 
a radical position against this approach and especially 
against the centralized use of representations as typified 
by the symbol system. There seemed to be too many 
steps, and hence delays, between sensing and action. In 
addition, the placement of the symbol system created a 
bottleneck. All information must flow through it. Since 
the symbol system must represent everything that needs 
to be represented, processes can't run in parallel. This 
leads to behavior that is slow and deliberative ill 
suited to dynamic environments where a quick response 
is needed.

In response, Brooks proposed the subsumption archi
tecture, in which each processing layer constitutes a be
havior (e.g., wander, avoid obstacles, track ball, shoot 
goal). Layers run in parallel with minimal interaction. 
They enjoy a tight coupling with sensing and action by 
directly using the robot's sensing of the environment as 
a point of reference instead of a centralized representa

tion. This makes for fast, reactive behavior.
However, it is unclear how Brooks' purposes-build 

robots could adapt to changing affordances. To assert 
that the subsumption architecture doesn't suffer from 
the symbol grounding problem is like saying that inver
tebrates don't have backache. Purely behavior-based 
robots don't possess the same competencies that a sym
bol system does. Some hybrid approaches have tried 
to graft a symbol system layer on to a behavior-based 
architecture (e.g., Malcolm 1995). But so long as the 
symbol system operates only under internal syntactic 
constraints, hybrid architectures will run into all the 
usual problems involved with not letting sensorimotor 
constraints bear on abstract reasoning.

To deal effectively with new situations a robot needs 
to model its affordances so that it can test its actions 
against a model before testing them against the world. 
In this way, the robot doesn't have to jump off a cliff be
fore discovering that this is dangerous; it can recognize 
the affordance and let its hypothesis about moving to
ward the cliff action die in its place (see Dennett 1996). 
A centralized representation may in fact form the core 
of a robot's affordance model, serving as a global con
ceptualization.

Some have argued that intelligence does not require a 
global conceptualization; it can just emerge from the 
separate interactions of simple units (e.g., neurons). 
But these two views do not conflict. Simple units to
gether constitute a global conceptualization to the ex
tent that their separate interactions foster global coher
ence and integration among separate bits of informa
tion. The conceptualization is centralized only in the 
sense that its parts are locked in mutual dependence. 
It is not a matter of mere proximity in space and time, 
since constraints can propagate in a distributed fashion. 

 Nevertheless, a global conceptualization exacts a high 
computational cost: the cost of integrating and main
taining the coherence of many different kinds of amodal 
and multimodal information while making them ex
plicitly available to other processes including those 
involving abstract reasoning (MacDorman in press). 
This cost makes a global conceptualization an inher
ently limited resource. Implementing it with a tra
ditional symbol system results in the frame problem 
(McCarthy & Hayes 1969). This is not only because it 
creates a processing bottleneck but because traditional 
symbol systems are underconstrained (Harnad 1993). 
Also the fact that they only have syntactic constraints 
means that they can represent anything" that is logi
cally possible including a limitless number of absurd 
concepts. Thus, time is wasted reasoning about events 
that can never occur (Fodor 1987). This problem results 
from an excess of freedom in the symbol system's repre
sentational form. A robot cannot overcome it by trying 
to figure out what not to reason about. If it must do 
this, it is already caught by the frame problem because 
it is already reasoning about things that don't change 
(Janlert 1996).

While biological systems can still be susceptible to 
the frame problem, they have finessed it in two ways. 
First, reasoning in animals is not purely logical or syn
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tactic. More importantly, the reasoning process itself 
depends on its relation to the world. The development 
of internal categories and transformations on those cat
egories depends on external interaction. Animals are 
able to make grounded distinctions because evolution 
and learning have abstracted them in a bottom-up fash
ion from a flow of sensorimotor information spanning 
the life of the organism and its ancestors. In this sense 
all embodied reasoning is empirically constrained. It 
is also functionally constrained by the inherent char
acteristics of neurons, sense organs, biomechanics, and 
so on. If a robot's representational form can be made 
to include empirical constraints, it won't have to waste 
time reasoning about what is empirically impossible.

The second way biological systems have finessed the 
frame problem is by separating, automating, and par
allelizing routine behavior patterns. These patterns are 
ofd loaded to nonconscious processes, which may be par
tially encapsulated from one another. Thus, conscious 
integration is applied where it is needed most, in deal
ing with new and unexpected situations. Oddly enough, 
a global conceptualization appears to be key to learn
ing and automating routine activities. Once automated, 
these activities may be performed in parallel with con
scious processing.

The pros and cons of a global conceptualization are 
made apparent by considering a child learning to walk. 
Walking is a form of controlled falling, and it is not just 
the step movement that is important, but timing it to 
catch the fall while in other respects maintaining bal
ance. At first, trying to walk occupies the child's full 
attention. The child makes each step with conscious and 
deliberate effort. The leg's current and target positions 
are explicitly represented as part of a global conceptu
alization. This representation is consciously accessible. 
We generally associate it with the child's experience. 
As the child becomes good at walking as this behav
ior becomes automatic the child's mind is freed up 
to think about other things, to play games, kick a ball, 
chase the cat, and to talk. In this way, precious cog
nitive resources are not squandered on the time-tested 
and habitual.

It is easy to extend this analysis of learning to walk to 
learning virtually anything: flying a kite, casting a net,, 
riding a bike, typing, playing tennis, or driving a car. 
Brooks' subsumption architecture is like a robot driv
ing a car by instinct. The behavior is impressive, but 
it did not learn it, and it cannot learn anything new. 
By contrast, the traditional sense-model-plan-act ar
chitecture is like a robot trying to steer a car, shift gears, 
watch the road, and talk to a passenger without hav
ing had any practice beforehand. It runs into the frame 

problem. It is not possible to do so many things at once 
consciously, given the high computational cost of global 
integration. We need a new approach which can com
bine the advantages of having a global conceptualiza
tion with those of having habitual behaviors, running 
in parallel, that are tightly coupled with sensing and 
action.

3. Predictions for affordances 

 Recognizing an affordance entails recognizing senso
rimotor invariance that is correlated with that affor
dance. Gibson believed that we directly perceive in
variance in the optical array (hence, his theory of direct 
perception). It is not surprising that Gibson underesti
mated the computational complexity of vision, since he 
wrote before researchers had begun to explore it seri
ously. We now know that invariance often exists only 
at a high degree of abstraction, far removed from raw 
sensorimotor data. Thus, the brain may need to process 
sensorimotor data extensively and to spend time learn
ing what kinds of invariance are useful in recognizing 
an affordance. Intelligent creatures must also be able 
to discover new affordances, for example, by detecting 
the consequences of their actions or by generalizing from 
other similar experiences.

Gibson had little to say about the internal workings of 
a system that could model affordances. Let us roughly 
sketch what form this kind of system might take. If 
we build sufficient empirical constraints into our the
ory, it should be able to guide the construction of robots 
whose cognitive processes have sufficient empirical con
straints. The aim is to build robots that can develop 
their own grounded symbols while avoiding the need to 
reason about stabilities.

An intelligent robot can discover the various interac
tions and effects that its environment affords by learning 
spatiotemporal correlations in its sensory projections, 
motor signals, and internal variables. These correlations 
are a kind of embodied prediction about the future. 
They integrate sensorimotor information from various 
sources and modalities and can be learned from experi
ence. The consequences a robot predicts for its potential 
actions depend on its perceived circumstances. Embod
ied predictions are, in this sense, conditional. Thus, at 
any given moment, sensorimotor information (as well as 
internal processes like reasoning and remembering) will 
activate only a subset of the robot's learned predictions. 
Currently active predictions constitute the robot's affor
dance model (see Figure 1).

図1　 The robot's currently active predictions constitute its

 affordance model. Those predictions that enjoy aIhigh

 degree of global integration are perhaps analogous to

 conscious expectations.

Active predictions expedite anticipatory responses to 

prepare the robot for what is likely to happen next. 
Should that event either fail to occur or fail to be per
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ceived, orienting responses direct attention to the source 
of error. The robot then revises old predictions and de
velops new ones to account for the unexpected occur
rence. In this way, attention helps to feed information 
concerning miscategorization back into the process of 
learning to recognize affordances.

Embodied predictions that support routine patterns 
of behavior become parallelized, automatic, and non
conscious. This is necessary to free up conscious re
sources, but it means that it is easy for even humans to 
misapply them in new situations. You might, for exam

ple, walk to where your bicycle is usually parked as a 
matter of habit, only to discover that the bicycle rack 
is empty. As conscious resources become focused on the 
matter, you may recall that you had to park the bicycle 
somewhere else because you arrived late and the gate 
was locked. Violated predictions bring the expressive 
freedom and representational power of conscious pro
cessing to bear on a previously unexpected occurrence , 
such as the discovery of the empty bicycle rack. In this 
way, they can make sense of the occurrence and embed 
it in a new context, so it can be reautomated.

The few mistakes we make because we must do most 
things nonconsciously are a small price to pay for over
coming the frame problem. Otherwise, we too might 
waste most of our time reasoning about things that nor
mally do not change. Perhaps Alfred Whitehead was 
right to say that civilization advances by increasing the 
number of tasks that can be performed without thinking 
about them.

4. Planned implementation of ƒµro

We now introduce the mobile robot Wro, which we 

are designing to recognize affordances and whose sep

arate modules we have tested independently. Exploit

ing an affordance provides internal and external feed

back. This feedback helps fro learn to discriminate of 

fordances by developing predictions concerning how its 

interactions transform physiological variables and sen

sory projections from distal objects.

4.1 Segmentation and tracking

ƒµro's goal is survival. It must intercept tasty robots 

and avoid poisonous and dangerous robots in a cluttered 

dynamic environment.ƒµro uses motion information to 

segment and track potential sources of invariance. Isard 

and Blake's (1998) method of conditional density prop

agation for visual tracking is particularly useful, since 

it can clearly segment a moving object while tracking 

it.

4.2 Learning affordance categories

Preprocessing. Once the robot has segmented the po

tential source of invariance, it converts it to a canonical 

form. This highlights invariance and facilitates compar

ison between different segmented images. The process 

involves (1) removing the background, (2) scaling the 

segmented image to fit on a 64-by-64 grid, (3) recoiling 

color information in terms of an intensity, red-versus

green, and blue-versus-yellow channel, (4) decompos

ing the recoiled image into a set of wavelet coefficients, 

and (5) quantizing the coefficients, retaining only the 

largest in absolute magnitude, to form a compact sig

nature for each segmented image.
Neurophysiological evidence supports opponent pro

cess recoiling in the brain, and empirical research in im
age querying suggests that it is more useful for catego
rization than other coding schemes. The wavelet trans
form and other multiresolution techniques are useful be
cause, at any given scale, it is often hard to find invari
ant features. The wavelet transform, when performed 
with a parameterized family of two dimensional Gabor 
filters, is also neurophysiologically plausible: these fil
ters match the receptive field profiles of 97% of simple 
cells in the cat visual cortex.

Learning categorical representations. While fro is 
tracking a potential source of invariance, it is calculating 
and accumulating image signatures. Internal feedback 
gives fro the affordance when it makes contact with 
it. The robot then creates a categorical representation 
(Hamad n1987) by statistically filtering out all signature 
values except those that tend not to vary among signa
tures of the same affordance category but vary among 
signatures of different affordance categories. Once Wro 
has learned some categorical representations, it pre
dicts the affordance from the representation that best 
matches the image signatures. If Wro miscategorizes, 
it refines its categorical representations accordingly and 
may learn several representations in order to discrimi
nate the same affordance.

4.3 Learning a sensorimotor model

Although we may conceive of certain concepts in 

purely abstract terms, it is unlikely that the brain rep

resents anything in a way that is completely free of em

pirical, sensorimotor constraints. Learning these con

straints is especially important in making rapid, grace

ful, well-coordinated movements. This is because error 

signals often become available only after a movement 

has completed (for example, when trying to score a goal 

in soccer) and the physical dynamics of a body some

times change unpredictably.

4 ƒµo learns its sensorimotor model by developing pre

dictions concerning how motor signals transform sen

sory projections. ƒµro's predictions are generalized from 

its past sensorimotor interactions. The robot uses a k

D tree (Sproull1991) to represent these experiences as 

points in a multidimensional phase space. ƒµro predicts 

how a new visual location maps onto its motor subspace 

by local linear interpolation: New visual locations are 

projected onto the motor subspace by means a coordi
nate system determined by closest points in the image 

plane subspace. Learning occurs when predictions fail. 

New points are then added to the phase space and, if 

ƒµro's sensorimotor dynamics have changed, old points 

are updated or discarded.

4.4 Navigation

ƒµro uses its learned sensorimotor model to plan paths 

to potential affordances in a cluttered environment. The 

sensorimotor effects of chains of actions may be de

scribed by a phase space similarly to how we described 

those of single actions. taro's search is highly con

strained because the robot quantizes the phase space 

into distinct hypercubes and then uses dynamic pro

gramming to avoid recomputing subpaths between hy
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percubes.
The robot attempts actions 'mentally' beginning from 

its starting position. It repeats this process among those 
hypercubes it has examined according to their prior
ity. Hypercubes that are closest to the goal in distance 
and closest to the start in time have the highest prior
ity. If 'ro has very little time to plan, its path some
what resembles one calculated by local hill climbing. 
If the robot has a little more time, the path becomes 
smoother and approaches a coarsely optimal solution, 
even though its calculation takes just a fraction of the 
time.

Like fro, potential affordances are often moving. Ya
sushi Yagi has studied the problem of learning a predic
tive model that could provide our planner with a prob
ability field of locations that moving objects are likely 
to occupy. Integrating such a model into our robot re
sults in planning that is proactive. A further benefit 
is that the robot does not have to recalculate paths as 
frequently.
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