
Heuristics for Projecting a Sensorimotor Mapping�

Karl F. MacDorman

Department of Systems and Human Science
Graduate School of Engineering Science, Osaka University

http://robotics.me.es.osaka-u.ac.jp/�kfm

Abstract: Learning a sensorimotor model and projecting that model spatially and temporally are

fundamental steps toward a robot that can create its own future. They enable a robot to predict

the consequences of its actions and create complex sensorimotor plans to obtain goals in new

environments. This paper proposes heuristics for projecting a sensorimotor model | to plan paths

to potential a�ordances in a cluttered environment | and evaluates them in simulation. The robot

represents the sensorimotor e�ects of chains of actions in a phase space, which it quantizes into

regions, called cells, to avoid recomputing subpaths between regions. In forward search, the robot

attempts actions \mentally," beginning from its starting position. It repeats this process among

those cells it has examined according to their priority. We evaluate an iterative algorithm that

optimizes a poor but quickly computed path and a noniterative algorithm that gives the highest

priority to examining cells that are closest to the goal in distance and closest to the start in time.

In our study the latter resulted in paths that are only 3.3 percent longer on average than the optimal

method but take less than a seventh the time to compute. Finally, we discuss issues concerning the

use of the algorithm in robots with onboard cameras.

1 Background: Symbol Grounding

In 1980 Alan Newell clari�ed a central assumption
in cognitive science, that the brain is a symbol sys-
tem [16, 1]. The assumption seems plausible because
the syntax of a representation can encode its role in
inference. Although this has been known since Aristo-
tle discovered the syllogism, its full impact came with
the advent of computers. This is because comput-
ers automate the process of manipulating representa-
tions according to their syntax. Humans are able to
ground deductive systems in their practical knowledge
of the world, but this leaves a dilemma for machines.
In robotics, a hybrid approach has developed that in-
volves interfacing a symbol system, used for abstract
reasoning, with a low-level system that recognizes and
manipulates objects [11].

The trouble with this approach is that the sym-
bol manipulation part functions according to internal
relations only: the rules and representations of the
symbol system. Yet evidence is mounting in various
�elds1 that mind-to-world relations need to constrain
even abstract reasoning [2, 5, 6, 9]. These relations
are fundamentally sensorimotor, and they can change
unexpectedly as either body or environment change.
They determine an organism's opportunities for inter-
action | what J. J. Gibson called its a�ordances [3]

�A grant from crest of jst helps support this research. Java

is a trademark of Sun Microsystems. Lego is a trademark of the

Lego Group. Pentium is a trademark of Intel Corporation.
1For example, linguistics [2], psychology [4, 5, 19], arti�cial

intelligence and robotics [6, 9].

 sensorimotor
 mapping

 motor
planning

 direct
perception

 actuators

 internal model

outer environment

 motivation system

affective
appraisal

automatic analog processes

 well learned skills
 are automated
in the lower module

 recognition
 & attention

decision

environment

body sensors

deliberate abstract conscious

Figure 1: The design for 	ro (pronounced sa
0i�ro, from

the Greek psyche + robot), a robot that exploits a�or-
dances. This paper focuses on the issue of planning a
sequence of actions to obtain a goal. We refer to this
as the spatiotemporal projection of a learned sensori-
motor mapping.

| and the kinds of invariance available to recognize
them.

If sensorimotor relations must constrain abstract
reasoning and if these relations are susceptible to bod-
ily and environmental change, this leads naturally to
the approach taken here. A mobile robot learns a
sensorimotor model from experience so that it can
make predictions about the consequences of its actions
(x3.1). This involves learning to recognize a�ordances
(x3.2) and the actions needed to exploit them. For
a fairly low-level task like robot navigation, this may
work out to knowing what is where. But notions of
object and distance must be discovered by the robot
itself based on how its motor signals transform both
internal indicators of well-being (e.g., battery level)
and the information that external objects project on
to its camera image planes and other sensors [8]. Once
a robot has learned to recognize a�ordances, it can
project its sensorimotor model into the future to ob-
tain goals (see Figure 1 and Figure 7 for a photo of
	ro the robot). This paper examines heuristics for
projecting such a model.

Although the proposed design is too simple to ex-
plain the full range of human behavior, it is more com-
plex than, for example, reinforcement learning. In
reinforcement learning, action selection is based on
the (expected future) reward in a perceived situation.
Normally, the robot must be in the same situation
many times to estimate this value. Thus, it is use-
ful to have additional forms of representation so that
new situations can be dealt with based on knowledge
abstracted from past experience. This includes (1)

sensorimotor maps that may be used to predict how
motor signals transform sensory projections from the
surfaces of individual objects; (2) representations of
the sensorimotor invariance underlying various cate-
gories of a�ordances; and (3) representations of how
interactions with di�erent a�ordance categories tend
to transform the robot's internal variables (e.g., bat-
tery level) [8, 9]. To generate interesting behavior, we
may wish to set up the robot with variables that are
behaviorally analogous to physiological and a�ective
states in animals.2

A sensorimotor model o�ers predictions concerning
how a robot's actions transform sensory information
and recognized a�ordances. The next section intro-
duces several algorithms for projecting a sensorimotor
model in space and time to attain goals. It presents
two heuristics for e�ciently �nding a sequence of mo-
tor signals that produce actions leading to a goal. The
�rst heuristic involves the iterative optimization of a
quickly calculated but suboptimal path, thus provid-
ing a locally optimal solution. The second heuristic
involves balancing a search criterion that favors com-
putational e�ciency with one that favors global op-
timality. While the results are not guaranteed to be
optimal, they are usually very good.

We explain the projection heuristics with the aid of
a JavaTM applet. The applet, a tutorial, and source
code are available at http://robotics.me.es.osaka-

2It is not assumed that these variables would correspond to

any real emotions or conscious states.

18 17 27 28 19 9 16 26 36 37 20 10

tail
(((((

head
((

t-2 (tail) t-1 (head)

(b)

6 7 8 9 10

16 17 18 19 20

26 27 28 29 30

36 37 38 39 40

G

t-1 (tail) t (head)

18 17 27 28 19 9

head tail
(((((

(a)

7 8 9 10

17 18 19 20

27 28 29 30

G

: transition
: order

Figure 2: In previous work we developed a method of
�nding the shortest path to a goal in a cluttered en-
vironment, where a mobile robot's speed, orientation,
and x; y position are described by a point in a phase
space. This technique is closely related to dynamic
programming because, once the robot has quantized
the phase space, it �nds the shortest path by calcu-
lating the optimal solution to all subproblems. In this
example the robot reasons backwards: For any quan-
tized motor signals (e.g., accelerate, turn sharply left),
it calculates one path to the goal from each accessible
cell that can reach the goal in one time step (a), stor-
ing the results in a queue. The robot then calculates
all paths to each of these cells in turn from unexam-

ined cells that are one time step away (b). (These cells
are two time steps from the goal.) This process is re-
peated until the robot reaches the cell that contains
its current state in the phase space.

u.ac.jp/�kfm/tutorials. The applet assumes that in-
formation is available from an overhead camera, thus
largely sidestepping issues concerning occlusion. It
does not address issues concerning robot-mounted
cameras, or how the robot may learn a sensorimotor
model and determine an appropriate goal. These is-
sues will be dealt with in later sections.

2 Projection Heuristics

Once a robot has learned a sensorimotor model and
can recognize a goal, a basic approach is to apply
means-ends analysis [15]: the robot \mentally" takes
whatever action will most reduce its physical distance
to the goal.3 This approach breaks down if there are
obstacles because, instead of taking the shortest path
to the goal, the robot will hug closely to the obsta-
cles, and it will become stuck if they form a concave
barrier on its path to the goal. Backtracking from
this arrangement of obstacles is impossible because

3Distance here is not physical distance but distance in a

phase space whose dimensions are determined by the robot's
sensors and may include other nondistance metrics like speed

and relative orientation.

Figure 3: This simulation illustrates an application of
the spatiotemporal projection algorithm to planning
a mobile robot's path to a goal. In the simulation,
planning begins from the goal and works back to the
robot's initial state. A priority queue is implemented
as a heap, thus allowing di�erent criteria for the search
priority. In this �gure, the search priority is the time

it takes to reach the goal, so the results are similar
to those obtained by using a simple queue. Obstacles
appear in black. Since the robot's state is represented
by a point, regions around obstacles, which appear in
gray, are declared o� limits to prevent collision with
obstacles owing to the robot's width. The white
ag
marks the robot's starting position and the gray
ag
marks its goal. The grid show the subdivision of the
phase space along the x; y axes. The subdivision ac-
cording to speed and orientation is given indirectly
by the appearance of black dots within each square.
These dots only occur when a cell for a given range
of positions, speeds, and orientations has been exam-
ined during search. The vertical position of the dot
within the square denotes one of three speed ranges
and the horizontal position denotes one of 36 orienta-
tion ranges. 54,571 cells were visited to calculate an
optimal path of length 39.

priority is given to reducing the distance to the goal,
but to reach the goal the robot must at �rst move
away from it to clear the obstacles. At the other ex-
treme, there is exhaustive search. This will �nd an
optimal path to the goal for a given coarseness in the
quantization of the motor signals and time interval.
However, the approach is only practical for very small
problems because the search grows exponentially (al)
with the length of the path (l) and the number of pos-
sible actions at any given moment (a). In other words,
exhaustive search su�ers from the curse of dimension-
ality.

The approach taken here is quite general, and it
may be applied to other problems, besides robot nav-
igation, that involve sensorimotor planning | for ex-
ample, performing a gymnastic movement like the kip
[14]. The robot's phase space (i.e., its space of possible

states, which in this simple simulation is determined
by its position, speed and orientation) is quantized
into hypercubes called cells. The robot begins plan-
ning from its starting cell and \mentally" tries actions
that may lead to other cells (see Listing 1). In the sim-
ulation we took the alternative approach of working
back from the goal. The robot begins by calculating
all paths originating in distinct cells that reach the
goal in one time step. These cells are placed in a pri-
ority queue. If the queue were simply a linked list and
the robot tried actions from the state in the cell at the
head of the queue and added cells it had examined to
the tail, the projection algorithm would be closely re-
lated to the application of dynamic programming4 to
continuous phase spaces [12, 7, 8] (see Figure 2).5 In
this simulation, however, the priority queue is imple-
mented as a heap [20] so that an arbitrary priority
function may be used for guiding search (see Figure
3).6

Each cell records the time required to reach it, the
cell from which it was reached, and the action taken
at that cell. It also records the (
oating point) loca-
tion in the phase space of the point within the cell, so
that errors in prediction do not accumulate owing to
the quantization. Cells that have already been visited
are never revisited. It is in this sense that the pro-
jection algorithm exploits the power of dynamic pro-
gramming, which lies in the fact that optimal partial
solutions are stored away and looked up when needed
to avoid recomputation. Exhaustive search, by con-
trast, may compute many paths between nearby re-
gions of a phase space.

Since a continuous phase space is being quantized,
we can only discuss optimality at a given coarseness of
quantization. In the limiting case, as the quantization
becomes ever more �ne, the algorithm approaches the
theoretical optimum. But these marginal gains come
at the expense of exponentially more computation.

As an alternative to forward search, we mentioned
that in the simulation the robot takes the somewhat
unnatural approach of \mentally" attempting actions
in reverse, starting from the goal. Simultaneously cal-
culating a forward and backward solution and stop-
ping when the two paths meet also provides an opti-
mal solution. Since there are usually more paths to
consider further from the start or goal, this technique
can greatly reduce the number of cells visited by elim-
inating the need to consider these paths. (The use-
fulness of this technique is less certain if the search is
guided by a priority other than time-to-goal or time-
from-start because the two paths may only meet near
the starting state or goal instead of meeting midway.)

4Dynamic programming is a method applied to discrete

problem where the only method of �nding the optimal solution
involves solving all unique subproblems [20].

5I used this technique in controlling a remote-controlled car

[7]. The best solution, a three-point turn, required the car to
move at �rst away from the goal, even though there are no

obstacles in its line of sight to the goal.
6An insertion into a heap requires on the order of log

2
H op-

erations where H is the size of the heap. Removing an element

from the top of the heap is also order log
2
H .

Figure 4: In this simulation each cell's Euclidean dis-

tance to the robot's starting position determines its
priority during search. Since cells are stored in the
heap according to their priority, the cell at the top of
the heap is the closest among them to the start. All
unexamined cells that can reach this cell in one time
step are stored in the heap, ordered according to their
distance from the start. The path is circuitous because
the robot tries to work its way from the goal back to
its starting state but encounters a convex obstacle.
Unlike with simple hill climbing algorithms, the robot
can escape from this local minimum because the al-
gorithm will not revisit the same cell. 7102 cells were
examined to calculate a path of length 152.

Although dynamic programming may postpone the
curse of dimensionality, �nding the optimal solution
to all subproblems at a given coarseness of quantiza-
tion may still be too costly for real-time application.
Furthermore, an optimal solution may not be needed.
This is why it is useful to organize cells in the heap
according to a priority function other than time (i.e.,
time to the goal for forward searches or time to the
robot's starting state for backward searches). This
means applying some heuristic | a method that is
not guaranteed to give an optimal solution but usu-
ally gives a reasonable solution. Using distance as the
priority function enables the rapid computation of a
path (see Figure 4). (In a forward search, this is the
distance to the goal. In a backward search, it is the
distance from the start.) But the path su�ers from
the same obstacle hugging found in means-ends solu-
tions (except that the robot will not get stuck because,
once visited, a cell will not be revisited unless it can
be reached in less time).

An iterative and noniterative heuristic. There are
two good solutions to this problem. One involves im-
proving on a poor path (e.g., one computed with dis-
tance as the priority, as in Figure 4) by (repeatedly)
marking the cells in the path's vicinity and then ap-
plying the projection algorithm using the time priority
in the marked region only [7, 8]. This method leads
to a locally optimal solution in the sense that it is the

Figure 5: Using time as the search priority resulted
in the examination of 54571 cells and an optimal path
length of 39 time steps. Using distance resulted in
the examination of 7102 cells (13%) but a path length
of 152 cells | almost four times the optimum. How-
ever, we can improve on this bad path by marking all
cells within a 5x5 region around it and using time as
a priority to �nd an optimal path within this marked
region only. Although this method is not guaranteed
to �nd a globally optimal solution, it does �nd one in
this example. The �nal path length (shown in gray)
is 39 time steps; however, the algorithm has only ex-
amined 18279 cells in total | one third the number
examined when just using time as the priority.

best obtainable path given an initial path, but a better
path may be obtainable from a di�erent initial path
(see Figure 5).

Another good method based on the well-known A?

algorithm involves using a weighted time and distance

priority (see Figure 6 and Listing 1). In a forward
search, the �rst cells to be visited in the heap are
those that are closest to the start in terms of the time
required to reach them and closest to the goal in terms
of Cartesian distance in the robot's sensory subspace.
(In a backward search, the �rst cells to be visited are
those that are closest to the goal in time and clos-
est to the start in distance.) If distance is weighted
more heavily in setting the priority, the path is longer
but calculated more quickly. As we weight time more
heavily than distance, the path approaches the opti-
mum but at the cost of more and more computation.

Shortcutting. To improve the search heuristics,
short cutting was introduced: Shortcutting allows a
cell to be reexamined and updated if its a new path
to the cell reaches it in less time than the previously
recorded path. Shortcutting never occurs if the prior-
ity is only time-to-goal (or time-to-start, for forward
searches).

Unfortunately, shortcutting complicates the han-
dling of the heap. What happens if the revisited cell
is simply inserted again into the heap according to its
new priority without removing the old pointer from

Figure 6: This simulation set the search priority ac-
cording to time and distance. (The time to reach the
goal is simply subtracted from the distance to the
starting state; a lower value has a higher priority.)
The path length is 43, which is almost as short as the
optimal 39 (91%) and the algorithm only examines
10756 cells, or less than a �fth the number using time
alone as the priority.

the heap's interior? Depending on certain implemen-
tation details, the old pointer may either be in the
wrong position in the heap given the priority of the
cell it points at or it may in the right position but
pointing at a cell that is obsolete.

To remove the old pointer e�ciently, each cell in the
heap must record its position therein. Furthermore,
any cells that are reached from the removed cell later
in the search are also obsolete. They should also be
removed or at least blocked from future consideration.
This requires many extra pointers, since a removed cell
must point at all its children so that they too can be
found and removed.

Although shortcutting often resulted in shorter
paths when distance was used as the search prior-
ity, this came the cost of much more computation.
Other heuristics generally o�ered shorter paths with
less computation than shortcutting.

2.1 Simulation Results

The table below lists the average path length, aver-
age computation time in milliseconds, and the average
number of cells examined for �ve di�erent search pri-
orities based on 10 trials with 10 di�erent mazes or
arrangements of obstacles.

priority ave. len. ave. time ave. cells

time 26.6 5197 ms 59039
distance 78.7 127 ms 4699
iterative 28.7 1603 ms 14325
time & dist. 27.5 717 ms 7512
30% { 70% 32.1 518 ms 5923

procedure fwd project (start, goal, heap, space) f
curr start;
do f
8~a 2 f~a1; . . .~ang f
next predict(curr, ~a);
if (:out-of-bounds-or-revisiting(next)) f
next.~a ~a;
next.time time-from-start;
next.priority time-from-start + dist.-to-goal;
next.origin curr;
space[quantize(next)] next;
if (reached(goal)) �nished;
insert(next, heap);
g

g

curr pop(heap);
g while (:empty(heap));
g

Listing 1: The forward projection algorithm. The
main di�erence between the various simulations is the
criterion used for calculating the priority. The current
cell is set to the starting cell. The algorithm tries in
turn every combination of motor signals ~a. It esti-
mates the likely next cell from the robot's experience
given the current cell and motor signals. It does not
consider the cell further if it is out of bounds or occu-
pied by an obstacle, or if it has already been examined.
The motor signals and time required to reach the next
cell are recorded as are the priority and a pointer to
the current cell. The next cell is then indexed by the
phase space and heap data structure, and if the goal
has been reached, the procedure exits. Once all cells
that are reachable from the current cell in one time
step have been examined, the cell with highest prior-
ity in the heap is removed, and that cell becomes the
current cell.

The simulation results show that a search prior-
ity based on time-to-goal and distance-from-start for
backward searches results in a good balance between
computational e�ciency and short path length. The
path length is only 3.3% longer than when using the
optimal method, but the computation time is just
13.8% of the computation time using the optimal
method; and the number of cells examined is just
12.7%.

The computing time may be shaved further, at the
expense of a slightly longer path, by giving a 30%
weighting to the time criteria and a 70% weighting
to distance rather than weighting them equally. Di-
minishing returns set in for more than a 70% weight-
ing for distance. A 200 MHz PentiumTM PC was used
in the simulations. The reader may experiment with
the simulation at http://robotics.me.es.osaka-u.ac.jp/
�kfm/tutorials.

2.2 A Note on RoboCup

In a robot competition Koji Tatani applied this al-
gorithm to controlling a manipulator.7 A member of
the audience was told to set up a maze with a start-
ing position and goal by attaching Lego R
 bricks to a
board. An overhead camera then captured an image
of the board, which was segmented by color and fed to
the projection algorithm. The algorithm then planned
a route from start to �nish. The manipulator followed
the route by pulling a toy car across the board.

In like manner, the algorithm can be easily adapted
to soccer playing robots at RoboCup.8 Most of the
teams in the medium-sized league use an overhead
camera and color image segmentation. It is easy to
�nd the location of the ball and goal based on their
color. So a simple control program would �nd a point
in the phase space that places the robot on the other
side of the ball, facing the goal. This point would be
given to the projection algorithm as the robot's goal
position. The algorithm would then plot the robot's
course to the point, treating other robots as obstacles.
Once the robot reaches that point, it simply kicks the
ball toward the goal. Of course, if the ball or other
robots move unexpectedly, the robot must make a new
plan.

If the movement of the other robots can be roughly
predicted, then that information can be entered into
the phase space, so that certain cells will be marked as
being o�-limits during future time intervals. Possible
methods for predicting the movement of other robots
based on their past activity range from canonical vari-
ate analysis to hidden Markov models.

Another issue concerns how to coordinate team ac-
tivity. All the players on one team should not rush for
the ball at the same time, possibly colliding with each
other. And if the ball is far from the goal, teammates
may need to set up their positions so they can make
passes. This could be handled by only sending the
closest teammate to the ball. If the ball is too far from
the goal to be kicked there directly, other teammates
could be sent to positions between the ball and goal.
(Note: These suggestions for applying spatiotemporal
projection heuristics to soccer-playing robots are not
meant to address the broader philosophical issues that
concern my research, such as how robots could develop
grounded representation from experience.)

Is the algorithm real-time? In a dynamic environ-
ment, a plan is only useful if it can be made quickly.
Otherwise, the plan will be out-of-date before it has
been completed. In the Java simulation, the projec-
tion heuristics generally are able to plan a path to the
goal in a fraction of a second. Since Java is an in-
terpreted language and since, even with a just-in-time
compiler, Java programs run a third to a tenth the
speed of C programs, better performance is obtainable
in a dedicated system. Of course, in a robotic system,
cpu cycles may be required for other tasks like im-
age processing and motor control. It is also important
that sensorimotor movements can be predicted rapidly

7Mitsubishi Electric movemaster RV-M1.
8http://www.robocup.org

since planning continuously relies on this information
(x3.1).

Figure 7: 	ro the robot.

The algorithm is fast enough given the current per-
formance of medium-sized soccer robots. And even
if it took several seconds, for example, to plan back-
ward from the goal, the robot can be guided by reac-
tive behaviors during this time. Its moving position
can be continuously updated in the phase space un-
til the projection algorithm reaches the corresponding
cell. However, computation time becomes a more se-
rious concern in higher dimensional phase spaces. A
humanoid robot, for example, may have at least 28 de-
grees of freedom. Given that the number of cells in the
phase spaces grows exponentially with its dimension-
ality, such complex phase spaces probably justify the
added overhead of a variable resolution quantization
[12, 13].

3 Mobile Robot Application

As we mentioned in the last section, the projec-
tion algorithm is very general and may be applied to
many kinds of motor planning tasks. We now con-
sider a speci�c application to mobile robot navigation
using 	ro, our homemade robot (see Figure 7). In
building 	ro, we took the \remote brain" approach,
so that we could keep the robot small while making
use of a sophisticated image processing board. An im-
age from an omnidirectional camera is transmitted to
the Hitachi IP5005 board via microwave (1.2 GHz).
A 500 MHz Pentium III PC performs such tasks as
recognition, decision making, and planning. A wire-
less modem then transmits motor commands to the
robot's controller board.

It is clear from Figure 1 that motor planning (i.e.,
the projection algorithm) depends on a sensorimotor
map. The algorithm also needs to know where the
goal is and, therefore, depends on processes involved in
recognizing a�ordances and deciding which a�ordance
to exploit. We brie
y summarize the algorithms used

for learning a sensorimotor map and for recognizing
a�ordances in xx3.1 and 3.2.

3.1 Learning a Sensorimotor Mapping

A robot may need to respond immediately to un-
expected changes in its sensorimotor relations. Unlike
neural networks, closest point methods are capable of
learning immediately from single instances. However,
they may give slower predictions and poorer general-
izations, especially in high dimensional phase spaces.
Since the projection algorithm may require thousands
of predictions to make a single plan and prediction
errors can easily accumulate, we need an algorithm
that can combine the strengths of closest point algo-
rithms and neural networks. Partition nets [10] are
an e�cient on-line learning algorithm that can make
fast predictions about well-practised movements while
quickly adapting to changes in sensorimotor relations.

The algorithm is interesting from a cognitive stand-
point because it mirrors certain aspects of how humans
learn. For example, in learning to ride a bike, we
progress from reasoning from memories of particular
events or instructions to a kind of automatic response
that demands little conscious e�ort or attention.

For simplicity we may view sensorimotor relations
as a function from an input state ~{t at time t to an
output state ~ot+1 at time t+ 1:

~ot+1 = f(~{t)

where the robot's perceived state ~st and motor signals
~at at time t determine ~{t, and its perceived outcome
state determines ~ot+1. To give a concrete example,
the robot 	ro sees an object at position (xt; yt) on
its camera image planes, and it needs to predict the
next location of the object (xt+1; yt+1) after it has
turned its right and left wheel by (l; r) (see Figure
7). Therefore, it needs to learn a mapping g(~{) that
approximates f .

As 	ro move about, partition nets memorize input-
output pairs (~{t; ~ot+1), unless they are able to predict
~ot+1 from ~{t with enough accuracy. At �rst, a predic-
tion about the consequence of an action in some new
state is based on a Gaussian blending of range values
for pairs that are near to the vector ~{t in the domain.
Meanwhile, a neural network is being trained during
spare cpu cycles using the backpropagation learning
algorithm [18]. When the predictive accuracy of the
network eclipses that of the blending functions, parti-
tion nets switch over to using the network for predic-
tion.

If the number of memorized input-output pairs
reaches a threshold, the input space is partitioned and
two networks are formed | one whose receptive �eld
covers the subspace on the low side of the partition,
and the other whose receptive �eld covers the subspace
on the high side. The input-output pairs are also par-
titioned into two matching subspaces. This partition-
ing concentrates network weights in more complex or
often explored areas of the mapping where they are
needed most. It also facilitates the rapid look-up of
nearby points when using Gaussian blending [17, 21].

3.2 Learning to Recognize A�ordances

Segmentation and tracking. 	ro's goal is survival.
It must intercept tasty robots and avoid poisonous and
dangerous robots in a cluttered dynamic environment.
	ro uses motion information to segment and track po-
tential sources of invariance.

Image preprocessing. Once the robot has segmented
the potential source of invariance, it converts it to a
canonical form. This highlights invariance and facili-
tates comparison between di�erent segmented images.
The process involves (1) removing the background,
(2) scaling the segmented image to �t on a 64-by-
64 grid, (3) recoding color information in terms of
an intensity, red-versus-green, and blue-versus-yellow
channel, (4) decomposing the recoded image into a set
of wavelet coe�cients, and (5) quantizing the coe�-
cients, retaining only the largest in absolute magni-
tude, to form a compact signature for each segmented
image. The wavelet transform and other multiresolu-
tion techniques are useful because, at any given scale,
it is often hard to �nd invariant features.

Learning categorical representations. While 	ro is
tracking a potential source of invariance, it is calculat-
ing and accumulating image signatures. Internal feed-
back gives 	ro the a�ordance when it makes contact
with it. The robot then creates a categorical repre-

sentation [4] by statistically �ltering out all signature
values except those that tend not to vary among signa-
tures of the same a�ordance category but vary among
signatures of di�erent a�ordance categories. Once 	ro
has learned some categorical representations, it pre-
dicts the a�ordance from the representation that best
matches the image signatures. If 	ro miscategorizes,
it re�nes its categorical representations accordingly
and may learn several representations in order to dis-
criminate the same a�ordance.9

3.3 Projection Heuristics Revisited

Relying exclusively on sensors that are attached to
the robot complicates both the projection algorithm
and the algorithms that support it. If an ordinary
camera is placed on the robot, nearby objects may
easily disappear from view as the robot advances or
turns (unless several camera are used). In this case,
the robot should maintain some prediction about the
relative locations of unseen and possibly moving ob-
jects. If the robot can only respond to what appears
in a narrow angle of sight, planning is seldom much
better than simply moving toward the goal.

Instead of developing an algorithm to second-guess
the positions of objects that are out of view, we chose
to use an omnidirectional camera. However, occlusion
is a more serious problem for an omnidirectional cam-
era than it is for a camera mounted overhead, and it
is di�cult to recognize distant objects because they
appear smaller. Thus, the system works better if the
robot can see over obstacles and if potential goals are
reasonably large.

9This subsection is taken from [9].

From the standpoint of the projection algorithm,
the main issue with using a robot-mounted camera
is how to quantize the phase space. When the robot
moves, distant objects generate much shorter
ow vec-
tors than nearby ones. The important point about the
quantization is to avoid reexamining nearby areas in
the phase space. But since it is basically just blocking
out areas from future consideration, the partitioning
of the phase space need not be exact; quantized re-
gions may overlap.

Therefore, to determine whether a region has al-
ready been examined, the algorithm searches among
the points in the phase space that have been exam-
ined so far, and it �nds the point among them that is
closest to the point under consideration. (This search
is performed in log2 n time [21].) An elliptical region
around this point is calculated based on the length of

ow vectors associated with nearby points in the phase
space. If the query point lies within that region, it is
not considered further.

4 Conclusion

The simulation demonstrates the usefulness of us-
ing a heuristic that balances the robot's time-to-goal
and distance-from-start in setting the search priority
for backward searches. On average the algorithm ob-
tained more than a seven fold gain in computational
e�ciency at the expense of only a 3.3 percent increase
in path length.

In a robotic system the weighting between time and
distance can be adjusted according to the computing
time available. If the robot has very little time to
plan, its path somewhat resembles one calculated by
\hill climbing." If the robot has a little more time, the
path becomes smoother. Given more time, the path
approaches a coarsely optimal solution, even though
its calculation takes just a fraction of the time of re-
quired by dynamic programming.

References

[1] Fodor, J.A. & Pylyshyn, Z.W. (1988). Connec-
tionism and cognitive architecture: A critical anal-
ysis. Cognition, 28(1-2), 3-71.

[2] Fodor, J.A. (1994). J.A. Fodor. In S. Guttenplan
(Ed.), A companion to the philosophy of mind. Ox-
ford: Blackwell.

[3] Gibson, J. J. (1979). The ecological approach to vi-

sual perception. Boston, MA: Houghton Mi�in.

[4] Harnad, S. (1987). Category induction and rep-
resentation. In S. Harnad (Ed.), Categorical per-
ception: The groundwork of cognition. Cambridge:
Cambridge University Press.

[5] Harnad, S. (1990a). The symbol grounding prob-
lem. Physica D, 42(1-3), 335-346.

[6] Harnad, S. (1993). Problems, problems: The frame
problem as a symptom of the symbol grounding
problem. Psycholoquy, 4(34). frame-problem.11.

[7] MacDorman, K. F. (1992). First year report and

thesis proposal. Computer Laboratory, Cambridge.

[8] MacDorman, K.F. (1997). Symbol grounding:

Learning categorical and sensorimotor predictions

for coordination in autonomous robots. Technical
Report No. 423. Computer Laboratory, Cambridge
(e-mail librarian@cl.cam.ac.uk for a copy).

[9] MacDorman, K.F. (1999). Grounding symbols
through sensorimotor integration. Journal of the
Robotics Society of Japan, 17(1), 20-24.

[10] MacDorman, K. F. (1999). Partition Nets: An ef-
�cient on-line learning algorithm. icar 99: Ninth

International Conference on Advanced Robotics,
Tokyo.

[11] Malcolm, C.M. (1995). The somass system: A
hybrid symbolic and behaviour-based system to
plan and execute assemblies by robot. In J. Hal-
lam, et al. (Eds.), Hybrid Problems, Hybrid Solu-

tions, pp. 157-168. Oxford: ISO Press.

[12] Moore, A.W. (1991). Variable resolution dy-
namic programming: E�ciently learning action
maps in multivariate real-valued state-spaces. In L.
Birnbaum & G. Collins (Eds.), Machine Learning:

Proceedings of the Eighth International Workshop.

San Mateo, CA: Morgan Kaufmann.

[13] Moore, A.W. & Atkeson, C.G. (1995). The parti-
game algorithm for variable resolution reinforce-
ment learning in multidimensional state-spaces.
Machine Learning, 21(3), 199-233.

[14] Nakawaki, D., Cisek, R., MacDorman, K.F., Joo,
S., & Miyazaki, F. (1998). Coaching information
determined from dynamic modeling based on a to-
tal energy analysis. 16th Annual Conference of the

Robotics Society of Japan (vol. 1), September 18-
20, 1998, Hokkaido University, pp. 45-6.

[15] Newell, A. & Simon, H.A. (1972). Human prob-
lem solving. Englewood Cli�s, NJ: Prentice-Hall.

[16] Newell, A. (1980). Physical symbol systems. Cog-
nitive Science, 4, 135-183.

[17] Omohundro, S.M. (1991). Bumptrees for e�cient
function, constraint, and classi�cation learning. In
R. P. Lippmann, J. E. Moody, and D. S. Touretzky,
Advances in Neural Information Processing Sys-

tems 3. San Mateo, CA: Morgan Kaufmann.

[18] Rummelhart, D.E., Hinton, G.E., & Williams,
R. J. (1986). Learning internal representation by
error propagation. In D.E. Rummelhart and J. L.
McClelland (Eds.), Parallel distributed processing:

Explorations in the microstructure of cognition,
Vol. 1, Ch. 8. Cambridge, MA: mit Press.

[19] Schyns, P.G., Goldstone, R. L., & Thibaut, J.-
P. (1998). The development of features in object
concepts. Behavioral and Brain Sciences, 21(1), 1-
17.

[20] Sidgwick, R. (1998). Algorithms in C (3rd ed.).
Reading, MA: Addison-Wesley.

[21] Sproull, R. F. (1991). Re�nements to nearest-
neighbor searching in KD trees. Algorithmica,

6(4), 579-589.

