
Partition Nets: An E�cient On-Line Learning Algorithm

Karl F. MacDorman
Department of Systems and Human Science
Graduate School of Engineering Science

Osaka University
Toyonaka, Osaka 560-8531 Japan

http://robotics.me.es.osaka-u.ac.jp/~kfm

Abstract

Partition nets provide a fast method for learning
sensorimotor mappings. They combine the general-
izing power of neural networks with the \one shot"
learning of instance-based search algorithms. Parti-
tion nets adjust receptive �elds and allocate network
weights \on the y," in response to the local sample
density and complexity of the mapping. They can help
a robot adapt quickly to bodily and environmental
changes. Thus, they satisfy several important criteria
for a cognitive theory of sensorimotor learning.

1 Introduction and motivation

This paper proposes a new method of learning a
sensorimotor mappings for successfully navigating a
mobile robot in a dynamic environment. It can also
be applied to learning many other kinds of nonlin-
ear mappings (e.g., hand-eye mappings in a humanoid
robot). The method incorporates important aspects
of animal learning to ensure responsiveness to unex-
pected bodily and environmental change.

1.1 The importance of learning in sensorimo-
tor activity

The survival of even the simplest organisms de-
pends on their ability to orient their movements rel-
ative to their environment. The standard approach
to modeling this relationship in robotics relies on an-
alytically derived equations [17]. It demands the ac-
curate measurement and representation of the robot's
dynamics (which is often impossible) and the use of
reliable, high precision equipment with known per-
formance characteristics. A humanoid robot designed
along these lines, for example, cannot cope with an el-
bow joint that sticks or a camera eye that is knocked
out of alignment. Any unexpected change in the
robot's dynamics, or the dynamics of the objects it
manipulates, is potentially catastrophic.

This rigidity contrasts with the robustness and
adaptability of biological systems. While responsive-
ness to change does not always require learning, learn-
ing is essential to the speed, grace, and coordination

of vertebrate activity. These features cannot be ex-
plained by servo-mechanical feedback loops given the
relatively slow speed at which neural impulses travel.
Human movement is highly resilient to environmen-
tal perturbations, with trajectory correction generally
occurring in less than 100 ms. This suggests the pres-
ence of a learned sensorimotor mapping that compares
visual, proprioceptive and motor signals to make open-
loop adjustments [18, 8, 9], see [4] for a computer
model. Moreover, only learning can explain the accu-
racy of ballistic movements (e.g., hitting a hole-in-one
at golf), since external feedback concerning the rela-
tive positions of projectile and goal comes only after
control of the object has ceased.

1.2 Key features of learning in animals

Vertebrates are capable of learning from even a sin-
gle example. Sometimes this kind of learning goes
amiss, as with the dog that bites any man in uni-
form. Generally though, as experience accumulates,
the learner is able to move from reasoning explicitly
from recollections of past situations to a kind of \au-
tomatic" response that does not refer to any situation
in particular. It is commonly assumed that learned
generalizations underlie this response.

The process of remembering instances and gener-
alizing from them operates in the context of other
cognitive processes that support it and contribute to
its e�ectiveness. Orienting responses, for example, di-
rect attention toward unexpected events, thus bring-
ing conscious processing to bear on them. Conscious
events take on a global inuence and may be reasoned
about abstractly. However, the power and exibility
of conscious processing come at a high computational
cost. This may explain why conscious processing is es-
sentially a limited resource, one that the brain cannot
squander. Processing limitations may explain why we
usually perform conscious tasks sequentially, such as
reasoning from speci�c past events. Thus, learning is
vital to o�-loading conscious processing by helping the
brain automate its responses to routine events. These
events may then be handled simultaneously by mas-
sively parallel nonconscious processes.

Based on the above observations, we can esh out
a possible theory of sensorimotor learning:
(1) Developing a sensorimotor model is a matter of

learning predictions concerning the consequences

of actions based on past experience. These pre-
dictions are derived from spatiotemporal correla-
tions in sensory projections and motor signals.

(2) The predictions are contingent on the agent's mo-
tivation, internal condition, and its perceived re-
lation to the environment. Therefore, only a sub-
set of its predictions are active at any moment.

(3) Active predictions constitute the agent's concep-
tualization. They elicit anticipatory responses.

(4) Predictions are initially derived from recollec-
tions concerning action outcomes in similar sit-
uations. As learning progresses, generalizations
replace predictions based on speci�c situations.

(5) Learning is proportional to the degree of unex-
pectedness. Learning does not occur when the
the di�erence between the predicted and actual
outcome is negligible. (This avoids wastage of
memory and processing time and helps prevent
the learning of noise.)

(6) Failed predictions result in orienting responses
that direct attention toward the source of error.
This brings the full repertoire of conscious pro-
cessing to bear on the unexpected event, and the
event may be integrated into a new perspective
on the situation.

(7) Failed predictions may lead to the memorization
of new instances, the forgetting of instances that
no longer apply, and the relearning of generaliza-
tions from the new instances.

While this theory can be applied to the recognition
of objects and events, in this paper we limit its scope
to learning a sensorimotor mapping.

1.3 Nearest neighbors and neural networks

The contrast between recalling speci�c instances
and responding from a learned generalization �nds a
natural analog among computational learning tech-
niques. Algorithms and data structures for nearest
neighbor search enable the e�cient retrieval of past in-
stances (prototypes, or categories) according to their
similarity to some new instance. Both nearest neigh-
bor [5] and neural network approaches [12, 13] have
proven useful for learning sensorimotor predictions
from past experience. However, they di�er vastly in
their performance characteristics.

Nearest neighbor learning converges immediately;
it will converge to a �nal approximation once it has
been exposed to all data points. Learning in feed-
forward neural networks by back propagation of error
may require orders of magnitude more time [14, 15, 6],
and the network may never reach a globally optimal
solution. Nearest neighbor algorithms require on the
order of log2N to N calculations to predict an output
given an input, where N is the number of memorized
data points; they require memory on the order of KN
to store N K-dimensional points. Neural networks
require on the order of W calculations, where W is
the number of weights; they require memory on the
order of KN +W during training but only W there-
after. While nearest neighbor prediction accuracy of-
ten requires a large number of noise free data points,

interpolating nearest neighbors (in noise free environ-
ments) or blending them (in noisy environments) can
overcome this limitation.

nearest neigbhor back prop.
convergence immediate slow
access time O(log2N); O(N) O(W)
memory O(N) O(N); O(W)
resists noise poor � good very good

The trade-o�s between nearest neighbor methods and
neural networks render the two approaches comple-
mentary | both as cognitive models and as practical
engineering solutions.

2 Partition nets

Partition nets are a new method of learning senso-
rimotor (or other nonlinear) mappings that combine
many of the advantages of nearest neighbor learning
and neural network learning by the backpropagation
of error. The name derives from the fact that the in-
put space is partitioned into subspaces, each with its
own neural network and bucket of points.

Key features of partition nets include the ability to
� learn in \one shot" from an instance;
� interpolate and blend across instances with sen-
sitivity to the local sample density;

� converge quickly to a generalization (see Fig. 1);
� mix instance based and generalization based pre-
diction to improve accuracy;

� resist noise;
� learn a mapping piecewise, thus saving memory;
� learn only when the cpu is idle;
� adapt neuronal receptive �elds \on the y" to the
local complexity and sample density of the map-
ping;

� partition receptive �elds without corrupting pre-
viously learned weights;

� allocate weights according to the local complexity
and sample density;

� provide an \everywhere continuous" mapping;
� satisfy the sensorimotor prediction aspect of at
least �ve out of the seven requirements (1-5) of
the proposed theory in section 1.2.

2.1 How partition nets work

To illustrate their use, let's consider a mobile robot
that, at time t, perceives an object at position (xt; yt)
on its camera image planes. It needs to predict the
location of the object (xt+1; yt+1) at time t + 1 af-
ter it has turned its left and right wheel by (l; r):
(xt+1; yt+1) = f(xt; yt; lt; rt). More generally,

~ot+1 = f(~{t)

Figure 1: A 2D-to-1D mapping with partition nets af-
ter only a few second of learning. The coordinates vary
from 0 to 1. Circles represent data points. All points
lie on f . The length of the line above or below a circle
gives the prediction error f � g. To use a partition
nets Java tutorial, visit: http://robotics.me.es.osaka-
u.ac.jp/�kfm

A memory ~mt � (~{t; ~ot+1) of an experience has input
dimensions ~{t constituted by the perceived state and
action and output dimensions ~ot+1 constituted by the
perceived outcome state. Since f(~{) is unknown, the
robot must learn a function g(~{) that approximates
f(~{).
Backprop. Partition nets use the back propaga-

tion learning algorithm [19] to minimize network error,
but they can easily be generalized to other learning
algorithms. Back propagation is a means of train-
ing nonlinear feed-forward neural networks. Using the
standard pattern by pattern method, training entails
repeatedly presenting the memorized data points in a
randomly shu�ed order at the input layer. The net
input to each unitj in layer l is the sum of the weighted
activations ai from the layer below (l � 1) and its ac-
tivation aj is the sigmoid of that sum:

Sj =
X
i

aiwj;i aj =
1

1 + e�Sj

Activations for the hidden layers are calculated layer
by layer in ascending order and then for the output
layer ~o � (a1; :::aO), where O is the output dimen-
sionality. For the standard backprop algorithm, input
activations range from 0 to 1 inclusively. The sigmoid
function ensures that activations in the output and
hidden layers also range between 0 and 1.

The synaptic weights for the output layer are at
�rst adjusted to minimize prediction error, then (in de-
scending order) for the hidden layers: �wj;i = ��jai,
where � is the learning rate. The deltas �j for the
output layer are the second derivative of the sigmoid
of the unit's net input multiplied by the di�erence be-
tween the target value and the output unit's activa-

tion:

�j =
e�Sj

(1 + e�Sj)2
(tj � aj)

The deltas for the hidden layers are calculated as fol-
lows:

�j =
e�Sj

(1 + e�Sj)2

X
k

�kwk;j

From instance to generalization. One advan-
tage of back propagation is that unlike traditional
smooth functions it appears not to su�er from the
curse of dimensionality [1, 2]. Nevertheless, back prop-
agation may be unsatisfactory for on-line learning be-
cause of its slow convergence. If the environment
changes, a robot needs to be able to respond immedi-
ately; it needs a provisional sensorimotor model until
a better model has been learned. Partition nets base
their predictions on a blending of M closest points in
a network's subspace < until the mean squared error
(at the output layer) is low enough for the network to
take over:

E =
1

2N

NX
n=1

OX
k=1

((~on+1)k � g(~{n)k)
2 < �1

where N is the number of points in < and K is the
output dimensionality. To focus learning and conserve
memory, partition nets only memorize a new data
point ~pt if they failed to predict its output dimensions
within a certain error k~ot+1 � g(~{t)k � �2. They for-
get all data points in a subspace once a function has
been learned to the desired degree of approximation
E < �3. The network is given a low priority thread so
it can spend spare cycles learning without typing up
the cpu.
Blending nearby points. Up to M currently

closest points are kept in a heap with the least close
among them at the top. (A heap is a fundamental
data structure in computer science that is used here
as a priority queue [20].) Conceptually, we may think
of a heap as tree structure in which a nontransitive re-
lation holds between every parent and its pair of chil-
dren (or child). In our case, the heap is implemented
as a pointer array, and every parent must point at (a
structure containing) a data point that is at least as
far from the input as its children's data points:

k~hi �~{tk � k~h2i �~{tk ; k~hi �~{tk � k~h2i+1 �~{tk

We insert data points into the heap until it is full and
then replace the least close point at the top of the
heap h~1 with the next data point ~mt if ~mt is closer to
the input ~{t.

1 Each insertion or replacement requires

1The distance squared is used in all distance comparisons.

There is no need to take the square root to get the actual dis-

tance since relative distances are enough to determine which

point is closer to the input.

To �nd the M closest points in an input space of dimension-

ality K, this method requires N distance squared calculations

(each involving K multiplications, K subtractions, and K � 1

O(H) operations, where H is the size of the heap,
since it may result in the promotion of other points in
the heap that are further from the input than ~pt.

2

While E � �1, the M points (h~1; . . . h~M) that are
nearest to the input ~{t (in the input space) are col-
lected in the heap and ~ot+1 is predicted by blending
their output: 8k 2 f1; . . .Kg,

ok

MX
i=1

!i (~hi)k

where M � 3. The weights in this a�ne combination
determine the relative inuence of each of the nearby
data points and must sum to 1. Raw weights are �rst
calculated using a Gaussian function: 8i 2 f1; . . .Mg,

ri e�4k
~hi�~{tk

2

=k~h1�~{tk
2

� e�4

Each weight ri is a Gaussian function of the distance
from h~i to the input ~{t as a proportion of the distance
to the furthest point h~1 among the M closest points.
The function ranges from almost 1 at the input point
~{t to 0 at h~1. Thus, h~1 has no inuence but ensures
that the function is continuous. Each raw weight is
then divided by the sum of the raw weights so that
the �nal weights sum to 1: 8i 2 f1 . . .Mg,

!i
riPM

i=1 ri

One bene�t of this approach over other Gaussian
blending approaches (e.g., [16]) is that the width of
the Gaussian is scaled to the local sample density at
the input point.3

Partitioning neuronal receptive �elds. Often
it is hard to determine the number of hidden units
needed for a neural network to generalize adequately
without overgeneralizing. This is especially true for
on-line learning. It may not be possible to estimate
the complexity of the mapping in advance. The num-
ber of available data points changes as memories of

additions), N comparisons to the furthest point h~1 among the

M current closest points, and O(R log
2
M) operations for R

insertions or replacements on a heap of size M .

The excessive sum optimization is used to eliminate many

multiplications in calculating the distance squared. The the

sum of the square of the di�erences is accumulated dimension

by dimension. If the value ever exceeds the distance squared to

h~1, the point is excluded without calculating the squared dif-

ferences for the remaining dimensions. For certain computers

faster performance is obtained by avoiding the excessive sum

optimization or modifying it to suit the hardware. The Pen-

tium III instruction set, for example, allows four simultaneous

oating point multiplications.
2See [20] for an explanation of big O notation.
3It should be noted that a 1D Gaussian function is used

irrespective of the input dimensionality. Higher accuracy may

be obtained by using the eigenvectors and eigenvalues of the

covariance matrix for the M closest points to rotate and scale

either the points themselves or a KD Gaussian used to blend

them.

new experiences accumulate and as old memories be-
come dated and are forgotten. To avoid smoothing out
relevant detail or learning noise, the complexity of the
model should match the complexity of the underlying
function f . This places bounds on the optimum ratio
of data points to synaptic weights. Partition nets set
bounds this ratio during learning by a �xing the num-
ber of hidden units in a network to a small constant
and setting a limit B (the bucket size) on the number
of data points associated with that network. Since
partition nets only memorize data points when they
cannot be predicted accurately, a full bucket may in-
dicate that more synaptic weights are needed or that
learning has not yet converged. When the number
of points exceeds the threshold B, the current input
subspace and data points contained therein are par-
titioned into two halves. The original network is as-
signed to one half and a clone of it to the other.

There are many ways to partition the points in a
vector space < into roughly equal halves. Partition
nets use one of the simplest methods. The partition
plane must be perpendicular to one of the coordinate
axes d. That dimension becomes the discriminator
dimension. Only a single comparison is needed to de-
termine whether an input point lies on the low side <L
or high side <H of the partition plane p: (~{t)d < p. If,
for example, the input point lies in the low subspace
<L and <L has also been partitioned, the process may
be repeated recursively.

Partition nets set the partition at the mean value of
the dimension with highest mean absolute deviation:

meank =

PB

i=1(~{i)k

B

max
k

BX
i=1

j(~{i)k �meankj

The mean absolute deviation is usually more robust
than the variance and, unlike the variance, requires
no multiplications. This method requires on the order
of B operations, where B is the size of the bucket.
Scaling. Since input values vary between 0 and 1,

if the input space has been partitioned many times, a
neural network will only receive a small range of input
values. This will greatly slow learning. The input to
the network should be scaled to match its shrunken
receptive �eld. To do this, the network records the end
points [(eL)k; (eH)k] for each dimension k that delimit
its subspace. For the original network, all end point
values range from 0 to 1. When the input space is
partitioned at p in discriminator dimension d, (eL)d
p for the high subspace network and (eH)d p for its
low subspace clone, so that [(eL)d; (eH)d]L is [0; p] for
the clone and [(eL)d; (eH)d]H is [p; 1] for the original
network. The input to each network is then scaled
according to the end point values for its corresponding
subspace: 8k 2 f1 . . .Kg,

sk
(~{t)k � (eL)k

(eH)k � (eL)k

This ensures that all input values will again fall be-
tween 0 and 1.

Scaling, however, creates another problem. The
weights of the low and high subspace network are no
longer applicable. A correction is made by a linear
scaling of the weights from the input unit for the dis-
criminator dimension d to all the units of the �rst
hidden layer. For the low subspace network, the ad-
justment is: 8j,

wj;d wj;d

p � (eL)k

(eH)k � (eL)k

Here and in the next two equations, (eL)k and (eH)k
are the end points of the entire space before partition-
ing [(eL)k; (eH)k]. For the high subspace network, the
adjustment is: 8j,

wj;d wj;d

(eH)k � p

(eH)k � (eL)k

It is also necessary to adjust the weights from the bias
unit of the input layer to all the units of the hidden
layer because the receptive �eld of the high subspace
has been translated as well as scaled: 8j,

wj;0 wj;0 +
p� (eL)k

(eH)k � (eL)k
wj;d

Partition nets show how neural networks can dove-
tail with a closest point approach. So, for example, if
network learning has su�ciently converged (EA < �1)
in one subspace <A but not in another <B, networkA
is used to predict ~ot+1 when ~{t 2 <A but Gaussian
blending of M closest points in <B is used to predict
~ot+1 when~{t 2 <B . Once learning convergence reaches
its �nal target (EA < �3), the points in <A are forgot-
ten and learning cycles are spent in other subspaces
where they are needed more.
The prediction algorithm. Multidimensional

search trees [3, 21] provide an ideal data structure
for hierarchically partitioning subspaces. Each node
in the tree corresponds to a subspace. Internal nodes
have a discriminator dimension d, partition p (which
indicates where dimension d is partitioned), and a pair
of pointers, one that point at the node's low child <L
and the other that points at its high child <H (see
[21]). Partition nets extend the KD tree structure so
that, in addition to a pointer that points a subspace's
bucket of points, each leaf node also a pointer that
points at its associated neural network.

If for any input point ~{ only the network or clos-
est points in one leaf node's subspace are used for
approximating the output, the function g(~{t;<) will
be discontinuous at subspace boundaries. Regardless
of whether the subspace is approximated by a neural
network or Gaussian blending ofM closest points, val-
ues at these boundaries will generally be less accurate
than in the central area of the subspace because these
values are extrapolated. Therefore, the output ~o near
boundaries is calculated from a linear blending of the
outputs of the two neighboring subspaces.

function g(~{;<) f
if (< is a leaf node) f
if (E < �1) return network(~{);
else return gblend(~{; (~m1; . . . ~mN));
g else f /* < is an internal node */
dp ~{d � p; /* distance to partition plane */
blendzoneL � width(<L;~{; d);
if (dp � �blendzoneL) return g(~{;<L);
blendzoneH � width(<H ;~{; d);
if (dp � blendzoneH) return g(~{;<H);
else f /* ~{ is in the blend zone, so blend */
~oL g(~{;<L);
~oH g(~{;<H);

!
(dp+blendzoneL)

(blendzoneH+blendzoneL)
;

8k 2 f1 . . .Kg; (~o)k (1 � !)(~oL)k + !(~oH)k;
return ~o;
g

g

g

Listing 1: Pseudocode for function g(~{).

If < is the subspace of a leaf node, g(~{;<) returns an
estimate of the perceived outcome state ~ot+1 (see List-
ing 1). The estimate of < 's neural network is returned
if it is accurate enough (E < �1). Otherwise, the esti-
mate is determined by gblend(~{; (~m1; . . . ~mN)), which
collects in a heap the M closest points in < 's bucket
and blends them using the Gaussian function, as ex-
plained above. If < is the subspace of a leaf node, its
distance to the partition plane dp is calculated. The
function width, which may recursively call itself, will
�nd ~{ 's leaf node subspace and return its width along
the dimension d. So a blend zone is calculated which
begins in the low subspace <L some fraction � (e.g.,
0.2) of < 's width below the partition plane and ends
in the high subspace <H some fraction � of < 's width
above the partition plane (� must fall in the range
[0; 1]). If ~{ is on the low side of the blend zone, no
blending at this partition is required, and g(~{;<L) is
called recursively for <L. Likewise, if ~{ is on the high
side of the blend zone, g(~{;<H) is called recursively
for <H . Otherwise, it is necessary to obtain the re-
sults of both g(~{;<L) and g(~{;<H) and blend them.
The blending is linear across the width of the blend
zone (i.e., an a�ne combination with linear inuence
weights).

2.2 A note about complexity

Let us assume that neural network learning has con-
verged su�ciently in each subspace so that only neu-
ral networks are used for prediction (Ei < (�1)i;8i 2
f1; . . .Sg, where S is the number of subspaces
<1 . . .<N). Let us further assume that the ratio of
the total number of data points to the total number
of weights is constant (S = kW). So if there are S sub-
spaces, each subspace will have a network with W=S
weights. If the KD tree is balanced, the depth will
be log2 S. For best case complexity, there is no blend

zone (� = 0). So there will be O(log2 S) comparisons
to �nd the appropriate subspace, O(log2 S) calls to
the O(log2 S) function width,4 and O(W=S) synap-
tic calculations to predict ~ot+1. So the algorithm is

O(W=S + log22 S), which compares favorably to using
a single neural network O(W), since W � S.

However, accuracy demands a blend zone to avoid
extrapolation. In the worse case the blend zone is
always unavoidable (i.e., � = 1, not a recommended
value). Then calculations are performed on all synap-
tic weights. A constant number of comparisons and
call to width must be made at every partition in the
KD tree, so the complexity is O(W + S log2 S).

Let us consider intermediate values of �. For a uni-
form distribution with � = 0:2 (a more reasonable
value), at each partition plane comparison, there are
still a constant number of comparisons and calls to
width. Additionally, there is a 80% chance of eliminat-
ing half the weights, comparisons, and calls to width

of the levels below and a 20% chance of eliminating
no weights, one comparison, and one call to width.

In the general case, the number of synaptic calcu-
lations is

O

W

�
1 + k

2

�log
2
S
!

(1)

If S is the number of leaf nodes, n = 2S�1 is the total
number of nodes. The complexity for the number of
comparisons and calls to width is described by the
following recurrence relation:

T (n) = (1� �)T (b
n

2
c) + �T (n� 1) +O(log2 n)

So, regardless of input dimensionality, the number
of synaptic weight calculations is given by equation
(1), and for small values of �, the average case per-

formance for other operations is O(log22 S) but rising
to O(S log2 S) for bounded S as � ! 1. Average
case complexity results generalize to the unbalanced
KD trees that typically result from on-line learning,
though the constants will be somewhat larger. Given
the inuence of constants, empirical comparisons are
probably more useful for small to medium-sized prob-
lems than the above complexity analysis.

3 Applications

Partition nets can be used to learn many kinds of
sensorimotor mappings, such as stereoscopic hand-eye
mapping for humanoid robots [5]. One of our students,
Nobuyuki Satoh, has applied this kind of mapping to a
robot that plays ping-pong. The obvious advantage of
a sensorimotor mapping is that the robot can intercept
or grasp objects rapidly. Furthermore, if the robot's
kinematics or camera geometry change, it can easily
relearn the mapping.

Our current application is developing a sensorimo-
tor mapping for a mobile robot 	ro [11]. The purpose

4If � = 0, of course, there is no point in calling width.

of the robot is to recognize and respond to a�ordances.
A�ordances are the opportunities for interaction that
objects a�ord. 	ro receives internal and external feed-
back when its exploits an a�ordance, and this feedback
helps the robot learn to recognize a�ordances by de-
veloping predictions concerning how its motor signals
transform sensor information from internal variables
and external objects. The robots goal is to survive
in a dynamic environment populated by edible and
dangerous robots.

It is crucial for a robot or any creature to recognize
what is where. But rather than impose our concept of
object or location on the robot, 	ro learns to recognize
its own a�ordances and to locate them in terms of
its own internal sensorimotor mapping.5 So partition
nets are primarily meant to address where an object
is in terms of the movements it takes to intercept or
manipulate it. In 	ro's case, this was the 4D-to-2D
mapping mentioned at the start of section 2.1.

Once 	ro has learned a sensorimotor mapping, it
uses the mapping to plan paths to potential a�or-
dances. The method involves the use of heuristics
for spatiotemporally projecting the learned mapping
in a quantized phase space. (Interested readers may
refer to the tutorial at http://robotics.me.es.osaka-
u.ac.jp/�kfm.) A method related to dynamic pro-
gramming is used to avoid recomputing subpaths be-
tween cells in the quantized space. Beginning from
	ro's starting (or �nishing) position, the robot at-
tempts actions \mentally." 	ro repeats this process
among those hypercubes it has examined according to
their priority.

A good heuristic gives highest priority to hyper-
cubes that are closest to the start in terms of the time
it take to reach them and closest to the goal in terms
of distance. A path is calculated faster by giving a
higher weighting to the distance term in the priority
function. However, the path will begin to resemble
one calculated by local hill climbing. As the priority
sifts back toward favoring time and distance equally,
the path becomes smoother and approaches an opti-
mal solution (for a given coarseness of quantization),
even though its calculation takes only a fraction of the
time as when using a priority function based solely on
time.

4 Conclusion

Partition networks are able to simulate the senso-
rimotor aspect of �ve key features of vertebrate learn-
ing (points 1{5 identi�ed in section 1.2). They can
also be integrated into a higher level attentional and
planning system (point 6). They learn when neces-
sary to correct errors or �ll in gaps in a sensorimotor

5In brief, the what system uses wavelet analysis to highlight

variations in image sequences of tracked objects [10]. Feedback

concerning how interactions transform internal variables (in the

presence of segmented encodings of objects) elicits the formation

of categorical representations. Categorical representations [7]

are derived from sensorimotor invariance that is indicative of

the same kind of a�ordance.

mapping. Once learning has converged, they are able
to adapt quickly to bodily or environmental change
(point 7). This is because (a) new memories of un-
expected events can be used right away, before the
relevant neural networks converge; (b) a relevant net-
work's empty subspace will �ll with new memories of
the unexpected events, and it will begin learning them
immediately, and (c) if the old mapping is not radi-
cally di�erent from the new mapping, the network's
old synaptic weights will help to speed convergence.
Other advantages of partition nets are summarized at
the top of section 2.

Acknowledgments

I gratefully acknowledge the kind assistance of my
students, Yoji Miyazaki and Koji Tatani, and support
from a research grant from crest of jst.

References

[1] Barron, A.R. (1992). Neural net approximation.
In Proceedings of the Seventh Yale Workshop on
Adaptive and Learning Systems, pp. 69-72. New
Haven, CT: Yale University.

[2] Barron, A.R. (1993). Universal approximation
bounds for superpositions of a sigmoidal func-
tion. IEEE Transactions of Information Theory,
39, pp. 930-945.

[3] Bentley, J. L. (1975). Multidimensional binary
search trees used for associative searching. Com-
munications of the acm, 18(9), 509-517.

[4] Bullock, D. & Grossberg, S. (1988). Neural dy-
namics of planned arm movements. Emergent in-
variants and speed-accuracy properties during tra-
jectory formation. Psychological Review, 95, 49-90.

[5] Clocksin, W.F. & Moore, A.W. (1989). Exper-
iments in adaptive state-space robotics. In Pro-
ceedings of the Seventh Conference of the Society
for Arti�cial Intelligence and Simulation of Be-
haviour, pp. 115-125.

[6] Gross, E.M. & Wagner, D. (1996). KD trees and
Delaunay-based linear interpolation for function
learning: A comparison to neural networks with er-
ror backpropagation. IEEE Transactions on Con-
trol Systems Technology, 4(6), 649-653.

[7] Harnad, S. (1987). Category induction and rep-
resentation. In S. Harnad (Ed.), Categorical per-
ception: The groundwork of cognition. Cambridge:
Cambridge University Press.

[8] Jeannerod, M. (1990). The representation of the
goal of an action and its role in the control of
goal-directed movements. In E. L. Schwartz (Ed.),
Computational neuroscience. Cambridge, MA: mit
Press, pp. 352-368.

[9] Jeannerod, M. (1994). The represented brain:
Neural correlates of motor intention and imagery.
Behavioral and Brain Sciences, 17(2), pp. 187-202.

[10] MacDorman, K. F. (1997). Symbol grounding:
Learning categorical and sensorimotor predictions
for coordination in autonomous robots. Technical
Report No. 423. Computer Laboratory, Cambridge
(e-mail librarian@cl.cam.ac.uk for a copy).

[11] MacDorman, K.F. (1999). Grounding symbols
through sensorimotor integration. Journal of the
Robotics Society of Japan, 17(1), 20-24.

[12] Mel, B.W. (1988). Building and using mental
models in a sensory-motor domain: A connection-
ist approach. In Proceedings of the Fifth Interna-
tional Conference on Machine Learning, 207-213.

[13] Mel, B.W. (1990). Connectionist robot motion
planning: A neurally-inspired approach to visually-
guided reaching. Boston: Academic Press.

[14] Omohundro, S.M. (1987). E�cient algorithms
with neural network behavior. Technical Report
No. UIUCDCS-R-1331. Department of Computer
Science, University of Illinois at Urbana Cham-
paign.

[15] Omohundro, S.M. (1990). Geometric learning al-
gorithms. Physica D, 42(1-3), 307-321.

[16] Omohundro, S.M. (1991). Bumptrees for e�cient
function, constraint, and classi�cation learning. In
R. P. Lippmann, J. E. Moody, and D. S. Touretzky,
Advances in Neural Information Processing Sys-
tems 3. San Mateo, CA: Morgan Kaufmann.

[17] Paul, R. P. (1981). Robot manipulators, math-
ematics, programming and control. Cambridge,
MA: MIT Press.

[18] Prablanc, C., Echallier, J. F., Komilis, E. & Jean-
nerod, M. (1979). Optimal response of eye and
hand motor systems in pointing at a visual target.
I. Spatio-temporal characteristics of eye and hand
movements and their relationships when varying
the amount of visual information. Biological Cy-
bernetics, 35, 113-124.

[19] Rummelhart, D.E., Hinton, G.E., & Williams,
R. J. (1986). Learning internal representation by
error propagation. In D.E. Rummelhart and J. L.
McCleland (Eds.), Parallel distributed processing:
Explorations in the microstructure of cognition,
Vol. 1, Ch. 8. Cambridge, MA: mit Press.

[20] Sidgwick, R. (1998). Algorithms in C. Reading,
MA: Addison-Wesley.

[21] Sproull, R. F. (1991). Re�nements to nearest-
neighbor searching in KD trees. Algorithmica,
6(4), 579-589.

