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Abstract

Robotics can serve as a testbed for cognitive theo-
ries. One behavioral criterion for comparing theories
is the extent to which their implementations can learn
to exploit new environmental opportunities. Further-
more, a robotics testbed forces researcher to confront
fundamental issues concerning how internal represen-
tations are grounded in activity.

In our approach, a mobile robot takes the role of
a creature that must survive in an unknown environ-
ment. The robot has no a priori knowledge about
what constitutes a suitable goal | what is edible,
inedible, or dangerous | or even its shape or how
its body works. Nevertheless, the robot learns how to
survive. The robot does this by tracking segmented
regions of its camera image while moving. The robot
projects these regions into a canonical wavelet domain
that highlights color and intensity changes at various
scales. This reveals sensory invariance that is readily
extracted with Bayesian statistics. The robot simulta-
neously learns an adaptable sensorimotor mapping by
recording how motor signals transform the locations of
regions on its camera image. The robot learn about its
own physical extension when it touches an object. But
it also undergoes an internal state change analogous
to the thirst quenching or nausea producing e�ects
of intake in animals. This allows the robot to learn
what an object a�ords | is it edible or poisonous? |
by relating these e�ects to learned clusters of invari-
ance. In this way primitive symbols emerge. These
proto-symbols provide the robot with goals that it can
achieve by using its sensorimotor mapping to navigate,
for example, toward food and away from danger.

1 The Motivation for Symbol Emergence

Even one-celled animals are able to make distinc-
tions, detecting the presence or absence of light or
chemicals so as to climb a gradient to a food source.
But whereas every other species lives in its niche,
Homo sapiens alone live in a world of their own mak-
ing. They adapt to the environment by adapting the
environment to themselves. They can disembed them-
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Figure 1: The design for 	ro (from psyche + robot),
a robot that exploits a�ordances.

selves, shift perspectives, stand back from the here and
now, and ponder futures unseen.

These abilities are often associated with language
and especially the power of a word or symbol to stand
in for something that is absent. Though the warning
call of a vervet monkey can stand in for the percep-
tion of a predator [4], language is more than that. It
is a kind of system of distinctions or di�erences [29].
While as practised it has aspects that are messy and
probabilistic, its syntax is for the most part produc-
tive, systematic, and inferentially coherent [7].

Inferential coherence refers to the fact that oper-
ations can be performed on sentences in such a way
that, if the original sentences correspond to true states
of a�airs (e.g., Socrates is a man; and all men are mor-
tal), the resulting sentences or conclusions also corre-
spond to true states of a�airs (Socrates is mortal). Of
course, since Aristotle invented the syllogism, it has
been known that a representation's syntax can encode
its role in inference. What is di�erent today is that
we have computers capable of automating this pro-
cess. This has strengthened the view that the mind
| like language | is a kind of symbol system [26].

The traditional AI approach to constructing a sym-
bol system involves a programmer determining a set
elementary symbols and rules for combining and ma-
nipulating them [19, 30]. The symbols may be manip-
ulated deductively [20] or procedurally [6]. In the lat-
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Figure 2: 	ro produces compact wavelet signatures
that correspond to segmented regions. The robot
learns invariance clusters that match against these re-
gions. Making contact with a region that corresponds
to a certain kind of object (e.g., edible, poisonous,
dangerous) results in an internal state change. The
robot identi�es this change with its matching clus-
ters. Thus, proto-symbols emerge as the robot learns
to categorize objects by their internal e�ects (and vi-
sual similarities). The robot appraises recognized ob-
jects in terms of its current internal state (e.g., hun-
gry, horny, bored). In this sense they correspond to
di�erent kinds of a�ordances. Their relative location
and hedonic value (given the robot's current internal
state) determine a hydrodynamic potential �eld in the
robot's sensorimotor phase space, which the robot at-
tempts to minimize by moving toward desirable ob-
jects while avoiding obstacles and dangerous objects
(e.g., a predator or a cli�).

ter case, operators transform state descriptions. Thus,
the application of an operator is meant to be analo-
gous to taking an imagined action during planning.

Although it is possible to embody a symbol sys-
tem in a robot so that objects instantiate symbols and
symbolic operations cause the robot to act on those
objects, this is a rather weak form of embodiment.
This is because a symbol system's symbol manipula-
tion obeys symbol-rule relations that are a priori and
internal to the system. The \system of distinctions"
may set up an in�nite space of possibilities, but the
distinctions and the possibilities they circumscribe are
�xed. But it has become increasingly clear to even
proponents of symbol systems that symbol-object re-
lations must be brought to bear on symbol manipula-
tion [8, 11, 12, 16]. These relations are sensorimotor;
they depend on having a particular body, and they
change as that body or its environment changes. Sen-
sorimotor relations inuence what the environment af-
fords | what Gibson called a�ordances [9] | and the
kinds of sensory invariance on which any distinction
can be made. Thus, they constrain not only what can
be done but what can be perceived. Taken together

Figure 3: A 2D-to-1D mapping with partition nets
after only a few second of learning. The coordinates
vary from 0 to 1. Circles represent data points. All
points lie on f . The length of the line above or below
a circle gives the prediction error f � g.

with cognitive and perceptual limitations, sensorimo-
tor relations delimit the space of potential distinctions,
and it is within this space that even the most abstract
forms of reasoning must occur.

To take account of these facts in developing rea-
soning machines, we propose an approach to emerging
symbols from the bottom up. A mobile robot learns
a sensorimotor model from experience so that it can
make predictions about the consequences of its actions
(x2). This involves learning to recognize a�ordances
(x3) and the actions needed to exploit them. For a
fairly low-level task like robot navigation, this may
work out to knowing what is where. But notions of
object and distance must be discovered by the robot
itself based on how its motor signals transform both
internal indicators of well-being and the information
that external objects project on to its camera im-
age planes and other sensors [15]. Once a robot has
learned to recognize a�ordances, it can use its senso-
rimotor model to obtain goals.

2 Sensorimotor Learning: Partition Nets

A robot may need to respond immediately to un-
expected changes in its sensorimotor relations. Unlike
neural networks, closest point methods are capable of
learning immediately from single instances. However,
they may give slower predictions and poorer general-
izations, especially in high dimensional phase spaces.
Since thousands of predictions may be required in the
course of making a single plan and prediction errors
can easily accumulate, we need an algorithm that can
combine the strengths of closest point algorithms and
neural networks.

Partition nets [17] are an e�cient on-line learn-
ing algorithm that can make fast predictions about
well-practised movements while quickly adapting to
changes in sensorimotor relations. The algorithm is
interesting from a cognitive standpoint because it mir-
rors certain aspects of how humans learn. For exam-
ple, in learning to ride a bike, we progress from reason-



function g(~{;<) f
if ( < is a leaf node ) f
if ( E < �1 ) return network(~{);
else return gblend(~{; (~m1; . . . ~mN));
g else f /* < is an internal node */
dp ~{d � p; /* distance to partition plane */
blendzoneL  � width(<L;~{; d);
if ( dp � �blendzoneL ) return g(~{;<L);
blendzoneH  � width(<H ;~{; d);
if ( dp � blendzoneH ) return g(~{;<H);
else f /* ~{ is in the blend zone, so blend */
~oL  g(~{;<L);
~oH  g(~{;<H);

!  
(dp+blendzoneL)

(blendzoneH+blendzoneL)
;

8k 2 f1 . . .Kg; (~o)k  (1� !)(~oL)k + !(~oH)k;
return ~o;
g

g

g
Listing 1: Pseudocode for function g(~{).

ing from memories of particular events or instructions
to a kind of automatic response that demands little
conscious e�ort or attention.

For simplicity we may view sensorimotor relations
as a function from an input state~{t at time t to an out-
put state ~ot+1 at time t + 1: ~ot+1 = f(~{t), where the
robot's perceived state ~st and motor signals ~at at time
t determine ~{t, and its perceived outcome state deter-
mines ~ot+1. To give a concrete example, the robot 	ro
sees an object at position (xt; yt) on its camera image
planes, and it needs to predict the next location of the
object (xt+1; yt+1) after it has turned its right and left
wheel by (l; r) (see Figure 5). Therefore, it needs to
learn a mapping g(~{) that approximates f .

As 	ro move about, partition nets memorize input-
output pairs (~{t; ~ot+1), unless they are able to predict
~ot+1 from ~{t with enough accuracy. At �rst, a predic-
tion about the consequence of an action in some new
state is based on a Gaussian blending of range values
for pairs that are near to the vector ~{t in the domain.
Meanwhile, a neural network trained during spare cpu
cycles using the backpropagation learning algorithm
[28]. When the predictive accuracy of the network
eclipses that of the blending functions, partition nets
switch over to using the network for prediction.

If the number of memorized input-output pairs
reaches a threshold, the input space is partitioned and
two networks are formed | one whose receptive �eld
covers the subspace on the low side of the partition,
and the other whose receptive �eld covers the subspace
on the high side. The input-output pairs are also par-
titioned into two matching subspaces. This partition-
ing concentrates network weights in more complex or
often explored areas of the mapping where they are
needed most. It also facilitates the rapid look-up of
nearby points when using Gaussian blending [27, 33].

Partition nets set the partition at the mean value of
the dimension with highest mean absolute deviation:

meank =

PB

i=1(~{i)k

B

max
k

BX

i=1

j(~{i)k �meankj
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Figure 4: After learning converges, backprop with par-
titioning gives excellent results.

The mean absolute deviation is usually more robust
than the variance and, unlike the variance, requires
no multiplications. This method requires on the order
of B operations, where B is the size of the bucket.

Since input values vary from 0 to 1, if the input
space has been partitioned many times, the neural net-
works will only receive a small range of input values.
This will greatly slow learning. The input to the net-
work is scaled to match its shrunken receptive �eld
and high and low subspace networks are adjusted so
that their weights remain applicable.

The prediction algorithm. Multidimensional
search trees [1, 33] provide an ideal data structure
for hierarchically partitioning subspaces. Each node
in the tree corresponds to a subspace. Internal nodes
have a discriminator dimension d, partition p (which
indicates where dimension d is partitioned), and a pair
of pointers, one that point at the node's low child <L
and the other that points at its high child <H (see
[33]). Partition nets extend the KD tree structure so
that, in addition to a pointer that points a subspace's
bucket of points, each leaf node also a pointer that
points at its associated neural network.

If for any input point ~{ only the network or clos-
est points in one leaf node's subspace are used for
approximating the output, the function g(~{t;<) will
be discontinuous at subspace boundaries. Regardless
of whether the subspace is approximated by a neural
network or Gaussian blending ofM closest points, val-
ues at these boundaries will generally be less accurate
than in the central area of the subspace because these
values are extrapolated. Therefore, the output ~o near
boundaries is calculated from a linear blending of the
outputs of the two neighboring subspaces.

If < is the subspace of a leaf node, g(~{;<) returns an
estimate of the perceived outcome state ~ot+1 (see List-
ing 1). The estimate of < 's neural network is returned
if it is accurate enough (E < �1). Otherwise, the esti-
mate is determined by gblend(~{; (~m1; . . . ~mN )), which
collects in a heap the M closest points in < 's bucket
and blends them using the Gaussian function, as ex-
plained above. If < is the subspace of a leaf node, its
distance to the partition plane dp is calculated. The
function width, which may recursively call itself, will
�nd ~{ 's leaf node subspace and return its width along



the dimension d. So a blend zone is calculated which
begins in the low subspace <L some fraction � (e.g.,
0.2) of < 's width below the partition plane and ends
in the high subspace <H some fraction � of < 's width
above the partition plane (� must fall in the range
[0;1]). If ~{ is on the low side of the blend zone, no
blending at this partition is required, and g(~{;<L) is
called recursively for <L. Likewise, if ~{ is on the high
side of the blend zone, g(~{;<H) is called recursively
for <H . Otherwise, it is necessary to obtain the re-
sults of both g(~{;<L) and g(~{;<H) and blend them.
The blending is linear across the width of the blend
zone (i.e., an a�ne combination with linear inuence
weights).

The reader may explore partition nets further with
the aid of a JavaTM applet. It is available at
http://robotics.me.es.osaka-u.ac.jp/�kfm/#tutorials
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Figure 5: The camera geometry of the robot and the
corresponding learned ow vectors of objects for mov-
ing forward or turning leftward in place.
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Figure 6: The camera geometry and the relearned ow
vectors after tilting the camera 45 deg. in the roll axis.

2.1 Results

Since partition networks can immediately give a
good approximation based on Gaussian blending,
learning converged orders of magnitude faster than for
ordinary backprop. Partition nets gave better predic-
tions than either Gaussian blending alone or backprop
with or without a partitioning of the input space in
the simulation in Figure 3. After a few seconds back-
prop was able to replace Gaussian blending in most
subspaces (viz., the smoother ones).
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Figure 7: Y, U, and V images of segmented regions are
scaled and projected into the normalized Haar wavelet
domain. This highlights invariance, since wavelet co-
e�cients are sensitive to di�erences in the lightness
and color of the image at varying resolutions. A com-
pact signature is formed from wavelet coe�cients that
are highest in absolute value. These signatures are
used to learn invariance clusters, which serve as naive
Bayesian classi�ers (see text).

It was useful to evaluate the component processes of
partition nets individually. Results from 200 new tri-
als show that on average Gaussian blending uniformly
gave better predictions than linear blending regard-
less of the number of learned data points. Another
�gure (see website) shows that output from eight clos-
est points provided the best prediction for Gaussian
blending if the sample noise was low, but more points
gave a better result as the noise increased. Figure 4
shows that after 20,000 learning cycles, backprop with
partitioning uniformly gave better predictions than or-
dinary backprop and that it almost uniformly outper-
formed Gaussian blending. (Of course, partition nets
give better performance still, because they can choose
whether to use backprop or Gaussian blending for each
subspace.) Partition nets gave good predictions on
real (noisy) image data from 	ro.

2.2 A Sensorimotor Adaptation Experiment

The sensorimotor mapping relates motor signals
that control two independently driven wheels to ow
vectors that signify changes in the visual projections
of objects in the robot's camera image. Presently, we
use the Hitachi IP5005 color image processing board
to remove the background and calculate the subcen-
troid of an object (its lowest point under the centroid)
because this o�ers a reasonable distance estimate for
many kinds of objects placed on a at surface, given
that our robot is only monocular.

The input to the sensorimotor mapping is the lo-
cation of the i'th object in the camera image (xit; y

i
t)

and a motor signal (lt; rt) for turning the wheels. The



output ~o = (xit+1; y
i
t+1) is the location of the i'th ob-

ject in the camera image after the robot has taken an
action. If the movement vector of an object resulting
from a motor signal was inaccurate, the robot replaces
nearby ow vectors with the newly experienced ow
vector. Thus, it adapts to sensorimotor change only
where necessary by relearning.

We veri�ed the usefulness of these method in an
experiment. The robot �rst learned a sensorimotor
map by recording the movement vectors of the subcen-
troids of several objects (Figure 5). We then tilted the
robot's camera 45 degrees in the roll axis. Although
the robot could not initially predict the objects' move-
ments accurately, it quickly relearned the mapping so
that it could again make accurate predictions (Figure
6). This demonstrates the exibility of the learning
method, and how it addresses issues concerning em-
bodiment such as a change in sensor geometry.
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Figure 8: The row showing four species of mushrooms
| shiitake, closed cup, eringi, and enoki | symbol-
ize four invariance clusters. Each cluster acts as a
naive Bayesian classi�er, and the signature of a newly
segmented and scaled region is matched against the
classi�er with the highest probability estimate. If the
probability is low that the signature matches against
any of the clusters, or if a signature is miscategorized,
a new cluster is tentatively formed.

3 Learning to Recognize A�ordances

Segmentation and tracking. 	ro's goal is survival.
It must intercept tasty objects and avoid poisonous
and dangerous ones in a dynamic environment. The
robot learns to do this through a process of feature ex-
traction and classi�er induction (cf. [2, 3]). A Hitachi
IP5005 image processing board is used to segment re-
gions by removing the wall and oor using color infor-
mation.

Image preprocessing and feature extraction. The
processing board next converts segmented regions to a
canonical form. This highlights invariance and facili-
tates comparison between di�erent segmented images.
The process involves (1) separating segmented regions
into separate Y, U, and V images; (2) scaling the re-
gions to �t on a 64-by-64 grid, (3) decomposing the
scaled region into a set of wavelet coe�cients, and (4)

quantizing the coe�cients, retaining only those that
are largest in absolute magnitude, to form a Y, U,
and V signature for each segmented region.

The wavelet transform and other multiresolution
techniques are useful because it is often hard to �nd
invariant features at a single characteristic scale. We
chose the Haar discrete wavelet transform for its
speed, and normalized the basis in relative, but not
absolute, terms. The normalized Haar basis proved
to be more robust because it does not over-emphasize
detailed coe�cients, which tend to be sensitive to the
sharp discontinuities along region boundaries created
by the segmentation process.

To generate the signature, the indices for each im-
age array of the N wavelet coe�cients that are largest
in absolute magnitude are collected in a heap data
structure (e.g., N = 20). The indices are given
the sign of their corresponding coe�cient and, once
sorted, form a compact signature (Figure 7).

Learning invariance clusters and categorical repre-

sentations. As 	ro tracks multiple regions, invariance
clusters count the signed indices of matching wavelet
signatures. Low-level miscategorization is detected
based on localization constraints on the position of
a region in successive camera images. A new cluster
is tentatively formed if a signature is miscategorized
or if it matches poorly against all existing invariance
clusters (i.e., results in a low probability estimate, Fig-
ure 8). The new cluster will be removed if it cannot
pick up enduring invariance. This typically happens
during segmentation errors when a poor match results
from two objects being segmented as if they were a
single object because of occlusion.

An invariance cluster is used to categorize regions
by linking them with internal changes (e.g., the e�ect
of eating a poisonous mushroom). They can do this,
for example, by serving as the basis for estimating
naive Bayesian probabilities. The robot may need to
develop several invariance clusters in order to classify
the same kind of object (e.g., edible). Di�erent clus-
ters, for example, may also correspond to the same
species of mushroom if it produces visual projections
that are very di�erent in the wavelet domain.

Internal feedback gives 	ro the a�ordance when it
makes contact with an object. The robot then creates
a categorical representation [10] or proto-symbol that
links invariance clusters to the internal and external
consequences of actions. 	ro uses categorical repre-
sentations to predict the a�ordance from the repre-
sentation that best matches the image signatures. If
	ro miscategorizes, it re�nes its categorical represen-
tations accordingly.

4 Primitive Navigation under Sensorimo-
tor Adaptation

In this section, we introduce a method of primi-
tive navigation that is able to exploit a sensorimotor
mapping while it is adapting to changes in a mobile
robot's body (e.g., its camera geometry, wheel radius)
[21, 13]. The robot's internal state and perceived af-
fordances determine what its current goals are and
what objects are unimportant or dangerous and to be
avoided. To reach a goal, the robot needs not only to
predict the movement of objects but also to recognize
its own body. Furthermore, the robot must predict
the objects' movement out of the camera's view. This
is because objects often go out of view during navi-
gation when using a perspective camera and because
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Figure 9: The �gure on the left shows the trajectories
of two stationary obstacles and a target object (e.g.,
an edible mushroom when the robot is hungry). The
trajectories within the camera image are accurate, but
those outside it must be predicted using learned vec-
tors in the sensorimotor mapping that are near the
edges of the camera image. Note from the body area
that the robot has learned about its physical exten-
sion from collisions with objects, shown as squares.
The image on the right provides an overhead view, es-
timated by dead reckoning. (It is given only for illus-
tration since the robot does not use dead reckoning.)

the robot's body is not usually observable. The robot
predicts the movement of the unseen objects using the
learned sensorimotor mapping based on the informa-
tion near the edges of the camera image (Figure 9).
Simultaneously, the robot learns to recognize its own
body in a sensorimotor space that extends beyond the
camera's view based on collisions.

Using the learned sensorimotor mapping and body
image, the robot chooses an action in the sensorimo-
tor space to circumnavigate obstacles and reach goals.
We apply a hydrodynamic potential �eld in the senso-
rimotor space to choose an action (cf. [5]). Given each
action's predicted movement, the robot calculates the
potential value for the next location. Then it takes the
action that corresponds to the location with the lowest
potential value. If that location is very close to its rec-
ognized body, the robot investigates the actions with
the next lowest potential values, successively, until it
�nds one that is expected to bring it into a position
that is not too close.

The potential �eld technique usually has the prob-
lem of local minima. To overcome it, the robot avoids
revisiting the same location in the sensorimotor space.
If the next location is very close to the visited loca-
tion, the robot investigates an action corresponding
to the next lowest potential value. If all the actions
are examined, the robot chooses the action that cor-
responds to the highest potential value (e.g., to back
out). Using this algorithm, the robot can react to
the immediate state of its sensorimotor space without
making a plan that could quickly become out-of-date
in a rapidly changing environment. As a result of ap-
plying this algorithms to the robot, we con�rmed that
it could avoid obstacles and reach goals as determined
by its current internal state (e.g., hungry, thirsty, see
Figure 9). Furthermore, the robot could perform the
task after the camera had been tilted, even in the pres-
ence of moving obstacles, once it had relearned the
mapping (Figure 10). These results demonstrate the
generality of the learning method in the mobile robot
domain.
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Figure 10: For a given pair of motor signals, 	ro's sen-
sorimotor mapping predicts the movement of station-
ary objects in its camera image. Moving objects (e.g.,
a predator) result in prediction error ~et: the di�erence
between the predicted ~pt and real ~rt new location qt+1
of the moving object. This error vector is added to
the predicted movement vector in the next time step
to compensate for the movement and, thus, improve
accuracy. The �gure on the right shows that 	ro is
able to navigate, even when its camera is tilted and
another object is moving. The robot stops, backs up
slightly to avoid collision, veers left, and moves ahead.

5 Conclusion

We examined a computational architecture for re-
sponding to a�ordances. The robot learns a senso-
rimotor mapping and a�ordance categorizations or
proto-symbols and uses the mapping for primitive nav-
igation to exploit a�ordances. The robot learns the
mapping and categorizations entirely within its sen-
sorimotor space, thus avoiding the issue of how to
ground a priori internal representations.

Partition nets provide a fast way to learn the senso-
rimotor mapping. They allocate network weights and
partition receptive �elds according to the local com-
plexity and sample density of the mapping. They are
resilient to kinematic and environmental change and
combine neural networks' generalizing ability with the
immediate learning of closest point techniques. This
makes them interesting as a cognitive model.
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