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Abstract

We explore two controversial hypotheses through robotic
implementation:(1) Processes involved in recognition and
response are tightly coupled both in their operation and epi-
genesis; and(2) processes involved in symbol emergence
should respect the integrity of recognition and response
while exploiting the fundamental periodicity of biological
motion. To that end, this paper proposes a method of recog-
nizing and generating motion patterns based on nonlinear
principal component neural networks that are constrained
to model both periodic and transitional movements. The
method is evaluated by an examination of its ability to seg-
ment and generalize different kinds of soccer playing activ-
ity during a RoboCup match.

1 Introduction

Complex organisms recognize their relation to their sur-
roundings and act accordingly. The above sentence sounds
like a truism owing in part to the almost ubiquitous dis-
tinction between recognition and response in academic dis-
ciplines. Engineering has successfully developed pattern
recognition and control as independent fields, and cogni-
tive psychology and neuroscience often distinguish between
sensory and motor processing with researchers specializing
in one area or the other. Nevertheless, in some sense recog-
nition and response entail one another. Recognizing an ob-
ject, action, or sign is largely a matter of recognizing what
it does for us and what we can do with it. Indeed, much of
what we perceive can be described in terms of potential ac-
tions. Doing andseeingcannot so readily be distinguished
because we acquaint ourselves with our world through what
we do and our actions drive what distinctions we learn to
make. None of this is meant to deny that we can experimen-
tally isolate purely motor centers in the brain from purely

Figure 1. In the proposed approach, a neural network
learns each kind of periodic or transitional movement
in order to recognize and to generate it. Recent senso-
rimotor data elicit activity in corresponding networks,
which segment the data and produce appropriate an-
ticipatory responses. Active networks constitute an
organism’s conceptualization of the world since they
embody expectations, derived from experience, about
the outcomes of acts and what leads to what. It is as-
sumed that behavior is purposive: affective appraisals
guide the system toward desired states.

sensory ones, but rather to assert that these centers are inti-
mately linked both in their everyday operation and in their
epigenetic development. Thus, as scientists and engineers,
we may have reified the distinction between recognition and
response, when their main difference is merely in descrip-
tive focus.

In this paper, we will entertain and begin to explore
two controversially and, as yet, unproven hypotheses: First,
there is an integrity of recognition and response. We recog-
nize an object or event largely because it elicits expectation
about what we can do with it — or at least piggybacks on
those kinds of expectations. In addition, these expectations
are expressed in terms of (or decontextualized from) how
motor signals transform sensory data. Second, biological
motion is fundamentally periodic. To put it simply, patterns



Figure 2. Actroid, the actress android, has 33 motors,
which are driven by compressed air, to move its head,
neck, arms, body, eyes, eyelids, and mouth. Actroid
can make smooth and natural movements, including
large and small gestures. Actroid has touch sensors
in the arms and can access floor and infrared sensors
and video cameras placed in the environment.

repeat. (If they did not, there would be little point in learn-
ing.) That is as much a function of the ‘hardware’ as it
is the often routine nature of existence. Joints, for exam-
ple, have a limited range and will eventually return, more or
less, to a given configuration. Moreover, bodies have cer-
tain preferred states: for people walking is a more efficient
means of locomotion than flailing about randomly. All gaits
exhibit a certain periodicity as do many gestures and vocal-
izations.

This paper proposes a method of generalizing, recogniz-
ing, and generating patterns of behavior based on nonlinear
principal component neural networks that are constrained
to model both periodic and transitional movements. Each
network is abstracted from a particular kind of movement.
Learning is competitive because sensorimotor patterns that
one network cannot learn will be assigned to another net-
work, and redundant networks will be eliminated and their
corresponding data reassigned to the most plausible alterna-
tive. Recognition is also competitive because propriocep-
tive data is associated with the network that best predicts
it. (The data can be purely kinematic or dynamic depend-
ing on the dimensions of the sensorimotor phase space.)
Since each network can recognize, learn, and generalize a
particular type of motion and generate its generalization,
the integrity of recognition and response are maintained.
These generalizations are grounded in sensorimotor expe-
rience. They can be varied, depending on the networks’
parametrization. They may be viewed as a kind of pro-
tosymbol. While we do not claim that the networks have
neural analogues, we believe the brain must be able to im-
plement similar functions.

1.1 The emergence of signs in communication

In one vein, we are exploring the application of
periodically-constrainedNLPCA neural networks to vocal
and gesture recognition and generation. Our aim is to de-
velop robots whose activity is capable of supporting the
emergence of shared signs during communication. Signs
take on meaning in a given situation and relationship, as
influenced by an individual’s emotional responses and mo-
tivation (see Figure 1). They reflect mutual expectations
that develop over the course of many interactions. We hy-
pothesize that signs provide developmental scaffolding for
symbol emergence. For infants, the caregiver’s intentions
are key to fostering the development of shared signs.

We believe that periodically-constrainedNLPCA neural
networks could be one of the embedded mechanisms that
support the development of shared signs. We are testing
this hypothesis by comparing the behavior generalized by
these neural networks with Vicon motion capture data from
mother-infant interactions.1 The results of behavioral stud-
ies are applied to the android robot, Actroid, which has 33
degrees of freedom (See Figure 2).
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Figure 3. Periodic nonlinear principal component net-
works may characterize motion patterns in a much
larger system for recognizing, learning, and respond-
ing behavior.

1.2 Mimesis loop

In a separate vein, we are applyingNLPCA neural net-
works to the learning of cooperative behavior in robot soc-
cer. Although techniques from reinforcement learning can
be borrowed to guide a robot’s behavior toward goals, they
cannot be directly applied to the state space of a humanoid
robot because of its enormous size. The approach outlined

1From this we have ascertained that certain important micro-behaviors
that make movement seem lifelike may have been overlooked in the ap-
proach outlined here, and we are starting to develop a micro-behavior filter.



in this paper can vastly reduce the size of the state space by
segmenting it into different kinds of movements. A mime-
sis loop [3] may be used to capture many aspects of the sort
of imitation involved in learning to play soccer and other
sports. This paper addresses one aspect of the mimesis loop:
the abstraction of a robot’s own kinematic motions from its
proprioceptive experience. Figure 3 roughly outlines how a
mimesis loop might be realized in a soccer playing robot.
Attentional mechanisms direct the robot’s sensors toward
the body parts of other players, and the robot maps success-
fully recognized body parts onto its own body schema. This
paper introduces a method to abstract the robot’s own kine-
matic patterns: our segmentation algorithm allocates propri-
oceptive data among periodic temporally-constrained non-
linear principal component neural networks (NLPCNNs) as
they form appropriate generalizations.

The robot can useNLPCNNs to recognize the activities
of other players, if the mapping from their bodies to its own
has already been derived by some other method. Since each
network correspond to a particular type of motion in a pro-
prioceptive phase space, it can act as a protosymbol. Thus,
the robot would be able to recognize the behavior of others
because it has grounded their behavior in terms of its own
body.

Although periodicNLPCNNs may be used to generate
motion patterns, the robot must continuously respond to un-
expected perturbations. There are a number of approaches
to this control problem that do not require an explicit model.
For example, distributed regulators [2] could set up flow
vectors around learned trajectories, thus, converting them
into basins of attraction in a phase space of possible actions.

1.3 Outline

This paper is organized as follows. Section 2 extends an
NLPCNN with periodic and temporal constraints. Section 3
presents a method of assigning observations toNLPCNNs to
segment proprioceptive data. Section 4 reports experimen-
tal results usingNLPCNNs to characterize the behavior of a
FujitsuHOAP-1 humanoid robot that has been developed to
play RoboCup soccer.

2 A periodic nonlinear principal component
neural network

The human body has 244 degrees of freedom [15] and
a vast array of proprioceptors. Excluding the hands, a
humanoid robot generally has at least 20 degrees of free-
dom — and far more dimensions are required to describe its
dynamics precisely. However, many approaches to control-
ling the dynamics of a robot are only tractable when sensory
data is encoded in fewer dimensions (e.g., [9]). Fortunately,
from the standpoint of a particular activity, the effective di-
mensionality may be much lower.
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Figure 4. Target values presented at the output layer
of a nonlinear principal component neural network are
identical to input values. Nonlinear units comprise the
encoding and decoding layers, while either linear or
nonlinear units comprise the feature and output layers.
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Figure 5. An NLPCA neural network with the activa-
tions of nodes p and q constrained to lie on the unit
circle.

Given a coding functionf : RN 7→ RP and decoding
functiong : RP 7→ RN that belong to the sets of continuous
nonlinear functionsC andD, respectively, whereP < N ,
nonlinear principle component networks minimize the error
functionE

‖~x− g(f(~x))‖2, ~x ∈ RN

resulting inP principal components[y1 · · · yp] = f(~x).
Kramer (1991) first solved this problem by training a mul-
tilayer perceptron similar to the one shown in Figure 4 us-
ing the backpropagation of error, although a second order
method such as conjugant gradient analysis converges to a
solution faster for many large data sets. Tatani and Naka-
mura (2003) were the first to apply anNLPCNN to human
and humanoid motions, though for dimensionality reduc-
tion only.

Nonlinear principal components analysis, unlikePCA

(Karhunen-Lòeve expansion), which is a special case where



C andD are linear, does not have a unique solution, and no
known computational method is guaranteed to find any of
the globally optimal solutions. Nevertheless, for a 20-DoF
humanoid robot, a hierarchically-constructed2 NLPCNN has
been shown to minimize error several times more thanPCA

when reducing to two-to-five dimensions [13].

2.1 The periodicity constraint

Because the coding functionf of an NLPCNN is con-
tinuous,(1) projections to a curve or surface of lower di-
mensionality are suboptimal;(2) the curve or surface can-
not intersect itself (e.g., be elliptical or annular); and(3)
projections do not accurately represent discontinuities [8].
However, since the physical processes underlying motion
data are continuous, discontinuities do not need to be mod-
elled. Discontinuities caused by optimal projections can
create instabilities for control algorithms (e.g., they allow
points along the axis of symmetry of a parabola to be pro-
jected to either side of the parabola). Moreover, anNLPCNN

with a circular node (Ridella et al., 1995, 1997) at the fea-
ture layer can learn self-intersecting curves and surfaces.

Kirby and Miranda (1996) constrained the activation val-
ues of a pair of nodesp and q in the feature layer of an
NLPCNN to fall on the unit circle, thus acting as a single
angular variable:

r =
√

y2
p + y2

q , yp ← yp/r, yq ← yq/r

The delta values for backpropagation of the circular node-
pair are calculated by the chain rule [4], resulting in the
update rule

δp ← (δpyq − δqyp)yq/r3, δq ← (δqyp − δpyq)yp/r3

at the feature layer.
The hyperbolic tangent and other antisymmetric func-

tions (i.e.,ϕ(x) = −ϕ(x)) are generally preferred to the
logistic function as the sigmoid in part because they are
compatible with standard optimizations [6].3 In addition,
antisymmetric units can more easily be replaced with linear
or circular units in the feature layer, since these units can
produce negative activations. We propose using a slightly
flatter antisymmetric function for the sigmoidal units with a
similar response characteristic totanh (see Fig. 6). The ad-
vantage of this node is that it can be converted to a circular
node-pair while still making use of its perviously learned
weights.

2The joint encoder dimensionality of limbs is independently reduced,
then the arms and the legs are paired and their dimensionality further re-
duced, and then finally the dimensionality of the entire body.

3These include mean cancellation, linear decorrelation using the K-L
expansion, and covariance equalization.
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Figure 6. The popular hyperbolic tangent activation
function y ← 1.7159 tanh( 2

3
y) can be approximated

by a pair of circular nodes where the activation of the
second node yq is fixed at

√
1.9443 and the activa-

tion of the first node is calculated accordingly yp ←
1.7159yp/

√
y2

p + 1.9443.

2.2 The temporal constraint

Neither linear nor nonlinear principal components anal-
ysis represent the time, relative time, or order in which data
are collected.4 This information, when available, can be
used to reduce the number of layers and free parameters
(i.e., weights) in the network and thereby its risk of con-
verging slowly or settling into a solution that is only lo-
cally optimal. Since the activationsyp andyq of the cir-
cular node-pair in the feature layer in effect represent a
single free parameter, the angleθ, if θ is known, we can
train the encoding and decoding subnetworks separately
by presentingk cos(θ) and k sin(θ) as target output val-
ues for the encoding subnetwork and as input values for
the decoding network.5 Once a single period of data has
been collected, temporal values can be converted to an-
gular valuesθ = 2π tk−t0

tn−t0
for data collected at any arbi-

trary time tk during a period, starting att0 and ending at
tn. A network may similarly learn transitions between peri-
odic movements when using a linear or sigmoidal activation
node in the feature layer because these open-curve transi-
tions do not restrict us to using nodes capable of forming a
closed curve.6 NLPCNNs with a circular feature node remain
useful to identify the period of a motion pattern, especially
when the pattern is irregular and, thus, begins and ends at
points that are somewhat far from each other.

4Although a temporal dimension could be added to an autoassociative
network, one drawback for online learning is that this dimension would
need to be continuously rescaled as more data is collected to keep it within
the activation range of the nodes.

5k ≈ 1.7 for zero-mean data with variance equal to 1 based on princi-
ples discussed in [6].

6ytarget = 2k( tk−t0
tn−t0

− 1
2
), with k ≈ 1.4.



3 Automatic segmentation

We conceived of the automatic segmentation problem as
the problem of uniquely assigning data points to nonlinear
principal component neural networks. It is possible to par-
tition the points without reference to the predictions of the
networks.7 However, for our method each network’s per-
formance influences segmentation with more networks as-
signed to regions that are difficult to learn.

A B

Figure 7. The thick line shows the output of an
NLPCNN and the thin line shows the underlying dis-
tribution. The dots are data points. A. Before learning
converges, allowing the network to learn data points
despite a high prediction error accelerates learning.
B. However, after convergence, it leads to segmenta-
tion errors.

As the robot begins to move, the first network is assigned
some minimal number of data points (e.g., joint-angle vec-
tors), and its training begins with those points. This gets
the network’s learning started quickly and provides it with
enough information to determine the orientation and cur-
vature of the trajectory. If the average prediction error of
the data points assigned to a network is below some thresh-
old, the network is assigned additional data points until that
threshold has been reached. At that point, data points will
be assigned to another network, and a network will be cre-
ated, if it does not already exist. To avoid instabilities, only
a single data point may shift its assignment from one net-
work to another after each training cycle.

Since a network is allowed to learn more data points as
long as its average prediction error per point is low enough,
it may learn most data points well but exhibit slack near
peripheral or recently learned data points. At the start of
learning, the network should be challenged to learn data
points even when its prediction error is large (see Fig. 7A).
As learning converges, however, the slack leads to segmen-
tation errors (see Fig. 7B). Therefore, we alter the method of
segmentation once the network nears convergence (as deter-
mined by Bayesian methods [7] or crossvalidation) so that

7For example, data points may be partitioned at the point at which a
trajectory most closely doubles back on itself, if the distance between the
two paths is within a certain threshold and the paths then diverge beyond
another threshold.

j ← 1, bucket ← 1, E ← 0
∀~xi {

train (networkj , ~xi)
Ei = ‖~xi − g(f(~xi))‖2, E ← E + Ei

if ( bucket > Bmax ∨
( learning? (networkj) ∧ E/bucket > Emax ) ∨
Ei > Ei+1 )
j ← j + 1, bucket ← 1, E ← 0 }

Listing 1: Pseudocode for segmentation.

a network may acquire neighboring points if its prediction
error for those points is lower that the network currently as-
signed to those points.

4 Humanoid experiments

This section shows the result of automatic segmentation
and neural network learning. We assess the accuracy of the
result based on a manual segmentation of the data points
and an analysis of how they are allocated among the net-
works.

First, we recorded motion data while aHOAP-1 hu-
manoid robot played soccer in accordance with a hard-
coded program [1]. Each data point is constituted by a 20-
dimensional vector of joint angles. A standard (noncircu-
lar) NLPCNN reduced the dimensionality of the data from
20 to 3, which was determined to be the intrinsic dimen-
sionality of the data by theISOMAP procedure [14] We then
applied our algorithm to segment, generalize, and generate
humanoid motion.

Our algorithm uniquely assigned the data points among
a number of circularly-constrainedNLPCNNs. Each of the
networks learned a periodic motion pattern by conjugate
gradients. Our algorithm successfully generalized five out
of six primary motion patterns: walking forward, turning

Figure 8. Fujitsu HOAP-1 robots are playing RoboCup
soccer.
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Figure 9. Recognized motion patterns embedded in
the dimensions of the first three nonlinear principal
components of the raw proprioceptive data. The top
and bottom plots differ only in the viewpoint used for
visualization.

right or left, and side-stepping to the right or left. It failed
to generalize as a single periodic trajectory the kicking mo-
tion, which has a highly irregular, self-intersecting shape.
However, human subjects were also unable to determine the
kicking trajectory from the data points.

Figure 9 shows that the automatic segmentation algo-
rithm successfully employed circularNLPCNNs to separate
and generalize five of the periodic motions. (The open-
curve segmentation of transitions between periodic motions
are omitted for clarity.) The periodic trajectories were gen-
erated by varying from0 to 2π the angular parameterθi

at the bottleneck layer of each of the circularly-constrained
networks and mapping the result to the output layer for dis-
play. This demonstrates our method’s capacity to generate
periodic motions.

We calculated statistics based on running the automatic
segmentation for 20 trails. The algorithm resulted in five
decoding subnetworks for 45% of the trials, which is the
most parsimonious solution. It resulted in six subnetworks
for 50% of the trials, and seven for the remaining 5%.

Since the data was generated by the predefined behav-
ior modules used by the Osaka University team in the 2003
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Figure 10. The average distance between the predic-
tion of a network trained on manually segmented data
and each of the automatically generated networks.

RoboCup humanoid competition, each data point was al-
ready labelled and could be segmented into the five types of
motion that had been successfully abstracted. To assess the
accuracy of the automatic segmentation algorithm, we man-
ually assigned the data points corresponding to each type of
motion to five periodic temporally constrainedNLPCNNs.
Figure 10 shows the average distance between the predic-
tion for each of these networks and each of the networks
resulting from automatic segmentation.

The lowest bar indicates which pattern the networks,
numbered 1 to 6 best match in terms of least average dis-
tance. Hence, the first network represents walking; the sec-
ond represents turning right; the third turning left; the fourth
and fifth sidestepping right; and the sixth sidestepping left.
The fact that the fifth network is redundant, abstracting the
same type of motion as the fourth, does not prevent the ab-
stracted actions from supporting the mastery of soccer or
some other task. Both networks can be used. The algo-
rithm’s capacity to reduce a vast amount of complex, raw
data to just a few states may help reinforcement learning
approaches to finesse the curse of dimensionality [12].

In a separate run of the learning and segmentation al-
gorithm, the motion sequence of recorded data during soc-
cer playing was walking forward, turning right, turning left,
walking forward, sidestepping to the right, sidestepping to
the left, and kicking. We counted the number of point
belonging to each network before and after removing re-
dundant networks. Redundant networks were removed by
means of linear integration. The angular valueθ was var-
ied from 0 to 2π at the bottleneck layer of one network
to obtain its predicted output. This value was fed into an-
other network to obtain its predicted value. If the integral
of the sum of the squared distances of the predicted outputs
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Figure 11. The percentage of data points allocated to
each network before and after eliminating redundant
networks and reassigning their data.

was less than a threshold, one network was removed and its
points reassigned to the other network (see Figure 11). This
method removed all redundant networks.

5 Conclusion

Our proposed algorithm abstracted five out of six types
of humanoid motion through a process that combines
learning and data point assignment among multiple neu-
ral networks. The networks perform periodic, temporally-
constrained nonlinear principal component analysis. The
decoding subnetworks generate motion patterns that accu-
rately correspond to the five motions without including out-
liers caused by nondeterministic perturbations in the data.
During 45% of training episodes, the algorithm generated
no redundant networks; a redundant network appeared in
50% of the training episodes, and two appeared in 5% of
them. Although the fourth and fifth networks represent
the same type of motion, this does not prevent them from
serving as action symbols for learning a complex task. By
means of linear integration, we were able to remove redun-
dant networks according to the proximity of their predic-
tions.

A kind of behavior can be recognized by selecting the
network that best predicts joint-angle values. It can be gen-
erated by varying the value ofθ in the bottleneck layer. This
shows the effectiveness of a tight coupling between recog-
nition and response since the same networks may be used
for both processes and they developed by the same mecha-
nisms. The significance of periodicity may be more limited,
however. Some motions are not periodic, and in the ex-
periment the kicking motion, although it occurs repeatedly,
was difficult to segment because of its highly irregular, self-

intersecting shape.
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