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Abstract

Music’s allure lies in its power to stir the emotions. But the
relation between the physical properties of an acoustic
signal and its emotional impact remains an open area of
research. This paper reports the results and possible
implications of a pilot study and survey used to construct
an emotion index for subjective ratings of music. The
dimensions of pleasure and arousal exhibit high reliability.
Eighty-five participants’ ratings of 100 song excerpts are
used to benchmark the predictive accuracy of several
combinations of acoustic preprocessing and statistical
learning algorithms. The Euclidean distance between
acoustic representations of an excerpt and corresponding
emotion-weighted visualizations of a corpus of music
excerpts provided predictor variables for linear regression
that resulted in the highest predictive accuracy of mean
pleasure and arousal values of test songs. This new
technique also generated visualizations that show how
rhythm, pitch, and loudness interrelate to influence our
appreciation of the emotional content of music.

1. Introduction

The advent of digital formats has given listeners greater
access to music. Vast music libraries easily fit on
computer hard drives, are accessed through the Internet,
and accompany people in their MP3 players. Digital
jukebox applications, such as Winamp, Windows Media
Player, and iTunes offer a means of cataloguing music
collections, referencing common data such as artist, title,
album, genre, song length, and publication year. But as
libraries grow, this kind of information is no longer

enough to find and organize desired pieces of music.
Even genre offers limited insight into the style of music,
because one piece may encompass several genres. These
limitations indicate a need for a more meaningful,
natural way to search and organize a music collection.

Emotion has the potential to provide an important
means of music classification and selection allowing
listeners to appreciate more fully their music libraries.
There are now several commercial software products for
searching and organizing music based on emotion.
MoodLogic (2001) allowed users to create play lists from
their digital music libraries by sorting their music based on
genre, tempo, and emotion. The project began with over
50,000 listeners submitting song profiles. MoodLogic
analysed its master song library to ‘‘fingerprint’’ new
music profiles and associate them with other songs in the
library. The software explored a listener’s music library,
attempting tomatch its songs with over threemillion songs
in its database. Although MoodLogic has been discon-
tinued, the technology is used inAMG’s product Tapestry.

Other commercial applications include All Media
Guide (n.d.), which allows users to explore their music
library through 181 emotions and Pandora.com, which
uses trained experts to classify songs based on attributes
including melody, harmony, rhythm, instrumentation,
arrangement, and lyrics. Pandora (n.d.) allows listeners to
create ‘‘stations’’ consisting of similar music based on an
initial artist or song selection. Stations adapt as the listener
rates songs ‘‘thumbs up’’ or ‘‘thumbs down.’’ A profile of
the listener’s music preferences emerge, allowing Pandora
to propose music that the listener is more likely to enjoy.
While not an automatic process of classification, Pandora
offers listeners song groupings based on both their own
pleasure ratings and expert feature examination.
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As technology and methodologies advance, they open
up new ways of characterizing music and are likely to offer
useful alternatives to today’s time-consuming categoriza-
tion options. This paper attempts to study the classifica-
tion of songs through the automatic prediction of human
emotional response. The paper contributes to psychology
by refining an index to measure pleasure and arousal
responses to music. It contributes to music visualization
by developing a representation of pleasure and arousal
with respect to the perceived acoustic properties of music,
namely, bark bands (pitch), frequency of reaching a given
sone (loudness) value, modulation frequency, and rhythm.
It contributes to pattern recognition by designing and
testing an algorithm to predict accurately pleasure and
arousal responses to music.

1.1 Organization of the paper

Section 2 reviews automatic methods of music classifica-
tion, providing a benchmark against which to evaluate the
performance of the algorithms proposed in Section 5.
Section 3 reports a pilot study on the application to music
of the pleasure, arousal, and dominance model of
Mehrabian and Russell (1974). This results in the
development of a new pleasure and arousal index. In
Section 4, the new index is used in a survey to collect
sufficient data from human listeners to evaluate ade-
quately the predictive accuracy of the algorithms pre-
sented in Section 5. An emotion-weighted visualization of
acoustic representations is developed. Section 5 introduces
and analyses the algorithms. Their potential applications
are discussed in Section 6.

2. Methods of automatic music classification

The need to sort, compare, and classify songs has grown
with the size of listeners’ digital music libraries, because
larger libraries require more time to organize them.
Although there are some services to assist with managing
a library (e.g.MoodLogic,AllMusicGuide, Pandora), they
are also labour-intensive in the sense that they are based on
human ratings of each song in their corpus. However,
research into automated classification of music based on
measures of acoustic similarity, genre, and emotion has led
to the development of increasingly powerful software
(Pampalk, 2001; Pampalk et al., 2002; Tzanetakis & Cook,
2002; Yang, 2003; Neve & Orio, 2004; Pachet & Zils, 2004;
Pohle et al., 2005). This section reviews different ways of
grouping music automatically, and the computational
methods used to achieve each kind of grouping.

2.1 Grouping by acoustic similarity

One of the most natural means of grouping music is to
listen for similar sounding passages; however, this is time

consuming and challenging, especially for those who are
not musically trained. Automatic classification based on
acoustic properties is one method of assisting the listener.
The European Research and Innovation Division of
Thomson Multimedia worked with musicologists to
define parameters that characterize a piece of music
(Thomson Multimedia, 2002). Recognizing that a song
can include a wide range of styles, Thomson’s formula
evaluates it at approximately forty points along its
timeline. The digital signal processing system combines
this information to create a three-dimensional fingerprint
of the song. The k-means algorithm was used to form
clusters based on similarities; however, the algorithm
stopped short of assigning labels to the clusters.

Sony Corporation has also explored the automatic
extraction of acoustic properties through the develop-
ment of the Extractor Discovery System (EDS, Pachet &
Zils, 2004). This program uses signal processing and
genetic programming to examine such acoustic dimen-
sions as frequency, amplitude, and time. These dimen-
sions are translated into descriptors that correlate to
human-perceived qualities of music and are used in the
grouping process. MusicIP has also created software that
uses acoustic ‘‘fingerprints’’ to sort music by similarities.
MusicIP includes an interface to enable users to create a
play list of similar songs from their music library based
on a seed song instead of attempting to assign meaning
to musical similarities.

Another common method for classifying music is
genre; however, accurate genre classification may require
some musical training. Given the size of music libraries
and the fact that some songs belong to two or more
genres, sorting through a typical music library is not
easy. Pampalk (2001) created a visualization method
called Islands of Music to represent a corpus of music
visually. The method represented similarities between
songs in terms of their psychoacoustic properties. The
Fourier transform was used to convert pulse code
modulation data to bark frequency bands based on a
model of the inner ear. The system also extracted
rhythmic patterns and fluctuation strengths. Principal
component analysis (PCA) reduced the dimensions of the
music to 80, and then Kohonen’s self-organizing maps
clustered the music. The resulting clusters form ‘‘islands’’
on a two-dimensional map.

2.2 Grouping by genre

Scaringella et al. (2006) survey automatic genre classifi-
cation by expert systems and supervised and unsuper-
vised learning. In an early paper in this area, Tzanetakis
and Cook (2002) investigate genre classification using
statistical pattern recognition on training and sample
music collections. They focused on three features of
audio they felt characterized a genre: timbre, pitch, and
rhythm. Mel frequency cepstral coefficients (MFCC),
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which are popular in speech recognition, the spectral
centroid, and other features computed from the short-
time Fourier transform (STFT) were used in the
extraction of timbral textures. A beat histogram repre-
sents the rhythmic structure, while a separate generalized
autocorrelation of the low and high channel frequencies
is used to estimate pitch (cf. Tolonen & Karjalainen,
2000). Once the three feature sets were extracted,
Gaussian classifiers, Gaussian mixture models, and k-
nearest neighbour performed genre classification with
accuracy ratings ranging from 40% to 75% across 10
genres. The overall average of 61% was similar to human
classification performance.

In addition to a hierarchical arrangement of Gaussian
mixture models (Burred & Lerch, 2003), a number of
other methods have been applied to genre classification,
including support vector machines (SVM, Xu et al.,
2003), unsupervised hidden Markov models (Shao et al.,
2004), naı̈ve Bayesian learning, voting feature intervals,
C4.5, nearest neighbour approaches, and rule-based
classifiers (Basili et al., 2004). More recently, Kotov
et al. (2007) used SVMs to make genre classifications
from extracted wavelet-like features of the acoustic
signal. Meng et al. (2007) developed a multivariate
autoregressive feature model for temporal feature inte-
gration, while Lampropoulos et al. (2005) derive features
for genre classification from the source separation of
distinct instruments. Several authors have advocated
segmenting music based on rhythmic representations
(Shao et al., 2004) or onset detection (West & Cox, 2005)
instead of using a fixed temporal window.

2.3 Grouping by emotion

The empirical study of emotion in music began in the late
19th century and has been pursued in earnest from the
1930s (Gabrielsson & Juslin, 2002). The results of many
studies demonstrated strong agreement among listeners
in defining basic emotions in musical selections, but
greater difficulty in agreeing on nuances. Personal bias,
past experience, culture, age, and gender can all play a
role in how an individual feels about a piece of music,
making classification more difficult (Gabrielsson &
Juslin, 2002; Liu et al., 2003; Russell, 2003).

Because it is widely accepted that music expresses
emotion, some studies have proposed methods of
automatically grouping music by mood (e.g. Li &
Ogihara, 2004; Wieczorkowska et al., 2005; Lu et al.,
2006; Yang et al., 2007). However, as the literature
review below demonstrates, current methods lack preci-
sion, dividing two dimensions of emotion (e.g. pleasure
and arousal) into only two or three categories (e.g. high,
medium, and low), resulting in four or six combinations.
The review below additionally demonstrates that despite
this small number of emotion categories, accuracy is also
poor, never reaching 90%.

Pohle et al. (2005) examined algorithms for classifying
music based on mood (happy, neutral, or sad), emotion
(soft, neutral, or aggressive), genre, complexity, perceived
tempo, and focus. They first extracted values for the
musical attributes of timbre, rhythm, and pitch to define
acoustic features. These features were then used to train
machine learning algorithms, such as support vector
machines, k-nearest neighbours, naı̈ve Bayes, C4.5, and
linear regression to classify the songs. The study found
categorizations were only slightly above the baseline. To
increase accuracy they suggest music be examined in a
broader context that includes cultural influences, listen-
ing habits, and lyrics.

The next three studies are based on Thayer’s mood
model. Wang et al. (2004) proposed a method for
automatically recognizing a song’s emotion along
Thayer’s two dimensions of valence (happy, neutral,
and anxious) and arousal (energetic and calm), resulting
in six combinations. The method involved extracting 18
statistical and perceptual features from MIDI files.
Statistical features included absolute pitch, tempo, and
loudness. Perceptual features, which convey emotion and
are taken from previous psychological studies, included
tonality, stability, perceived pitch height, and change in
pitch. Their method used results from 20 listeners to train
SVMs to classify 20 s excerpts of music based on the 18
statistical and perceptual features. The system’s accuracy
ranged from 63.0 to 85.8% for the six combinations of
emotion. However, music listeners would likely expect
higher accuracy and greater precision (more categories)
in a commercial system.

Liu et al. (2003) used timbre, intensity and rhythm to
track changes in the mood of classical music pieces along
their entire length. Adopting Thayer’s two axes, they
focused on four mood classifications: contentment,
depression, exuberance, and anxiety. The features were
extracted using octave filter-banks and spectral analysis
methods. Next, a Gaussian mixture model (GMM) was
applied to the piece’s timbre, intensity, and rhythm in
both a hierarchical and nonhierarchical framework. The
music classifications were compared against four cross-
validated mood clusters established by three music
experts. Their method achieved the highest accuracy,
86.3%, but these results were limited to only four
emotional categories.

Yang et al. (2006) used two fuzzy classifiers to
measure emotional strength in music. The two dimen-
sions of Thayer’s mood model, arousal and valence, were
again used to define an emotion space of four classes: (1)
exhilarated, excited, happy, and pleasure; (2) anxious,
angry, terrified, and disgusted; (3) sad, depressing,
despairing, and bored; and (4) relaxed, serene, tranquil,
and calm. However, they did not appraise whether the
model had internal validity when applied to music. For
music these factors might not be independent or mutually
exclusive. Their method was divided into two stages:
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model generator (MG) and emotion classifier (EC). For
training the MG, 25 s segments deemed to have a
‘‘strong emotion’’ by participants were extracted from
195 songs. Participants assigned each training sample to
one of the four emotional classes resulting in 48 or 49
music segments in each class. Psysound2 was used to
extract acoustic features. Fuzzy k-nearest neighbour and
fuzzy nearest mean classifiers were applied to these
features and assigned emotional classes to compute a
fuzzy vector. These fuzzy vectors were then used in the
EC. Feature selection and cross-validation techniques
removed the weakest features and then an emotion
variation detection scheme translated the fuzzy vectors
into valence and arousal values. Although there were
only four categories, fuzzy k-nearest neighbour had a
classification accuracy of only 68.2% while fuzzy nearest
mean scored slightly better with 71.3%.

To improve the accuracy of the emotional classification
of music, Yang and Lee (2004) incorporated text mining
methods to analyse semantic and psychological aspects of
song lyrics. The first phase included predicting emotional
intensity, defined by Russell (2003) and Tellegen et al.’s
(1999) emotional models, in which intensity is the sum of
positive and negative affect. Wavelet tools and Sony’s
EDS (Pachet & Zils, 2004) were used to analyse octave,
beats per minute, timbral features, and 12 other attributes
among a corpus of 500 20 s song segments. A listener
trained in classifying properties of music also ranked
emotional intensity on a scale from 0 to 9. This data was
used in an SVM regression and confirmed that rhythm
and timbre were highly correlated (0.90) with emotional
intensity. In phase two, Yang and Lee had a volunteer
assign emotion labels based on PANAS-X (e.g. excited,
scared, sleepy and calm) to lyrics in 145 30 s clips taken
from alternative rock songs. The Rainbow text mining
tool extracted the lyrics, and the General Inquirer package
converted these text files into 182 feature vectors. C4.5 was
then used to discover words or patterns that convey
positive and negative emotions. Finally, adding the lyric
analysis to the acoustic analysis increased classification
accuracy only slightly, from 80.7% to 82.3%. These
results suggest that emotion classification poses a sub-
stantial challenge.

3. Pilot study: constructing an index for the
emotional impact of music

Music listeners will expect a practical system for
estimating the emotional impact of music to be precise,
accurate, reliable, and valid. But as noted in the last
section, current methods of music analysis lack precision,
because they only divide each emotion dimension into a
few discrete values. If a song must be classified as either
energetic or calm, for example, as in Wang et al. (2004), it
is not possible to determine whether one energetic song is

more energetic than another. Thus, a dimension with
more discrete values or a continuous range of values is
preferable, because it at least has the potential to make
finer distinctions. In addition, listeners are likely to
expect in a commercial system emotion prediction that is
much more accurate than current systems.

To design a practical system, it is essential to have
adequate benchmarks for evaluating the system’s
performance. One cannot expect the final system to be
reliable and accurate, if its benchmarks are not. Thus,
the next step is to find an adequate index or scale to
serve as a benchmark. The design of the index or scale
will depend on what is being measured. Some emotions
have physiological correlates. Fear (Öhman, 2006),
anger, and sexual arousal, for example, elevate heart
rate, respiration, and galvanic skin response. Facial
expressions, when not inhibited, reflect emotional state,
and can be measured by electromyography or optical
motion tracking. However, physiological tests are
difficult to administer to a large participant group,
require recalibration, and often have poor separation of
individual emotions (Mandryk et al. 2006). Therefore,
this paper adopts the popular approach of simply
asking participants to rate their emotional response
using a validated index, that is, one with high internal
validity. It is worthwhile for us to construct a valid and
reliable index, despite the effort, because of the ease of
administering it.

3.1 The PAD model

We selected Mehrabian and Russell’s (1974) pleasure,
arousal and dominance (PAD) model because of its
established effectiveness and validity in measuring gen-
eral emotional responses (Russell & Mehrabian, 1976;
Mehrabian & de Wetter, 1987; Mehrabian, 1995, 1997,
1998; Mehrabian et al. 1997). Originally constructed to
measure a person’s emotional reaction to the environ-
ment, PAD has been found to be useful in social
psychology research, especially in studies in consumer
behaviour and preference (Havlena & Holbrook, 1986;
Holbrook et al. 1984 as cited in Bearden, 1999).

Based on the semantic differential method developed
by Osgood et al. (1957) for exploring the basic
dimensions of meaning, PAD uses opposing adjectives
pairs to investigate emotion. Through multiple studies
Mehrabian and Russell (1974) refined the adjective
pairs, and three basic dimensions of emotions were
established:

Pleasure – positive and negative affective states;
Arousal – energy and stimulation level;
Dominance – a sense of control or freedom to act.

Technically speaking, PAD is an index, not a scale. A
scale associates scores with patterns of attributes,
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whereas an index accumulates the scores of individual
attributes.

Reviewing studies on emotion in the context of music
appreciation revealed strong agreement on the effect of
music on two fundamental dimensions of emotion:
pleasure and arousal (Thayer, 1989; Gabrielsson &
Juslin, 2002; Liu et al. 2003; Kim & Andrè, 2004;
Livingstone & Brown, 2005). The studies also found
agreement among listeners regarding the ability of
pleasure and arousal to describe accurately the broad
emotional categories expressed in music. However, the
studies failed to discriminate consistently among nuances
within an emotional category (e.g. discriminating sadness
and depression, Livingstone & Brown, 2005). This
difficulty in defining consistent emotional dimensions
for listeners warranted the use of an index proven
successful in capturing broad, basic emotional dimen-
sions.

The difficulty in creating mood taxonomies lies in the
wide array of terms that can be applied to moods and
emotions and in varying reactions to the same stimuli
because of influences such as fatigue and associations
from past experience (Liu et al., 2003; Russell, 2003;
Livingstone & Brown, 2005; Yang & Lee, 2004).
Although there is no consensus on mood taxonomies
among researchers, the list of adjectives created by
Hevner (1935) is frequently cited. Hevner’s list of 67
terms in eight groupings has been used as a springboard
for subsequent research (Gabrielsson & Juslin, 2002; Liu
et al., 2003; Bigand et al. 2005; Livingstone & Brown,
2005). The list may have influenced the PAD model,
because many of the same terms appear in both.

Other studies comparing the three PAD dimensions
with the two PANAS (Positive Affect Negative Affect
Scales) dimensions or Plutchik’s (1980, cited in Havlena
& Holbrook, 1986) eight core emotions (fear, anger, joy,
sadness, disgust, acceptance, expectancy, and surprise)
found PAD to capture emotional information with
greater internal consistency and convergent validity
(Havlena & Holbrook, 1986; Mehrabian, 1997; Russell
et al. 1989). Havlena and Holbrook (1986) reported a
mean interrater reliability of 0.93 and a mean index
reliability of 0.88. Mehrabian (1997) reported internal
consistency coefficients of 0.97 for pleasure, 0.89 for
arousal, and 0.84 for dominance. Russell et al. (1989)
found coefficient alpha scores of 0.91 for pleasure and
0.88 for arousal.

For music Bigand et al. (2005) support the use of three
dimensions, though the third may not be dominance. The
researchers asked listeners to group songs according to
similar emotional meaning. The subsequent analysis of
the groupings revealed a clear formation of three
dimensions. The two primary dimensions were arousal
and valence (i.e. pleasure). The third dimension, which
still seemed to have an emotional character, was easier
to define in terms of a continuity–discontinuity or

melodic–harmonic contrast than in terms of a concept
for which there is an emotion-related word in common
usage. Bigand et al. (2005) speculate the third dimension
is related to motor processing in the brain. The rest of
this section reports the results of a survey to evaluate
PAD in order to adapt the index to music analysis.

3.2 Survey goals

Given the success of PAD at measuring general
emotional responses, a survey was conducted to test
whether PAD provides an adequate first approximation
of listeners’ emotional responses to song excerpts. High
internal validity was expected based on past PAD
studies. Although adjective pairs for pleasure and arousal
have high face validity for music, those for dominance
seemed more problematic: to our ears many pieces of
music sound neither dominant nor submissive. This
survey does not appraise content validity: the extent to
which PAD measures the range of emotions included in
the experience of music. All negative emotions (e.g.
anger, fear, sadness) are grouped together as negative
affect, and all positive emotions (e.g. happiness, love) as
positive affect. This remains an area for future research.

3.3 Methods

3.3.1 Participants

There were 72 participants, evenly split by gender, 52 of
whom were between 18 and 25 (see Table 1). All the
participants were students at a Midwestern metropolitan
university, 44 of whom were recruited from introductory
undergraduate music classes and 28 of whom were
recruited from graduate and undergraduate human–
computer interaction classes. All participants had at least
moderate experience with digital music files. The
measurement of their experience was operationalized as
their having used a computer to store and listen to music
and their having taken an active role in music selection.

The students signed a consent form, which outlined the
voluntary nature of the survey, its purpose and procedure,
the time required, the adult-only age restriction, how the

Table 1. Pilot study participants.

Age Female Male

18–25 27 25
26–35 4 8

36–45 4 2
45þ 1 1

Subtotal: 36 36
Total: 72
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results were to be disseminated, steps taken to maintain
the confidentiality of participant data, the risks and
benefits, information on compensation, and the contact
information for the principal investigator and institutional
review board. The students received extra credit for
participation, and a US$100 gift card was raffled.

3.3.2 Music samples

Representative 30 s excerpts were extracted from 10
songs selected from the Thomson Music Index Demo
corpus of 128 songs (Table 2). The corpus was screened
of offensive lyrics.

3.3.3 Procedure

Five different classes participated in the survey between
21 September and 17 October 2006. Each class met
separately in a computer laboratory at the university.
Each participant was seated at a computer and used a
web browser to access a website that was set up to collect
participant data for the survey. Instructions were given
both at the website and orally by the experimenter. The
participants first reported their demographic informa-
tion. Excerpts from the 10 songs were then played in
sequence. The volume was set to a comfortable level, and
all participants reported that they were able to hear the
music adequately. They were given time to complete the
18 semantic differential scales of PAD for a given excerpt
before the next excerpt was played.

A seven-point scale was used, implemented as a radio
button that consisted of a row of seven circles with an
opposing semantic differential item appearing at each
end. The two extreme points on the scale were labelled
strongly agree. The participants were told that they were
not under any time pressure to complete the 18 semantic
differential scales; the song excerpt would simply repeat
until everyone was finished. They were also told that

there were no wrong answers. The order of play was
randomized for each class.

3.4 Results

The standard pleasure, arousal, and dominance values
were calculated based on the 18 semantic differential item
pairs used by the 72 participants to rate the excerpts from
the 10 songs. Although Mehrabian and Russell (1974)
reported mostly nonsignificant correlations among the
three factors of pleasure, arousal, and dominance,
ranging from 70.07 to 70.26, in the context of making
musical judgments in this survey, all factors showed
significant correlation at the 0.01 level (2-tailed). The
effect size was especially high for arousal and dominance.
The correlation for pleasure and arousal was 0.33, for
pleasure and dominance 0.38, and for arousal and
dominance 0.68. In addition, many semantic differential
item pairs belonging to different PAD factors showed
significant correlation with a large effect size. Those item
pairs exceeding 0.5 all involved the dominance dimension
(Table 3). In a plot of the participants’ mean PAD values
for each song, the dominance value seems to follow the

Table 2. Song excerpts for evaluating the PAD emotion scale.

Song title Artist Year Genre

Baby Love MC Solaar 2001 Hip Hop
Jam for the Ladies Moby 2003 Hip Hop
Velvet Pants Propellerheads 1998 Electronic
Maria Maria Santana 2000 Latin Rock

Janie Runaway Steely Dan 2000 Jazz Rock
Inside Moby 1999 Electronic
What It Feels

Like for a Girl

Madonna 2001 Pop

Angel Massive Attack 1997 Electronic
Kid A Radiohead 2000 Electronic

Outro Shazz 1998 R&B

Table 3. Pearson’s correlation for semantic differential item
pairs with a large effect size.

D

Dominant Outgoing Receptive

Submissive Reserved Resistant

P Happy 0.05 0.23** 0.53**
Unhappy

Pleased 70.14** 0.02 0.59**
Annoyed
Satisfied 70.07 0.11** 0.59**
Unsatisfied

Positive 70.01 0.14** 0.57**
Negative

A Stimulated 0.61** 0.60** 70.08*

Relaxed
Excited 0.58** 0.70** 70.05
Calm

Frenzied 0.58** 0.64** 70.04
Sluggish
Active 0.60** 0.73** 0.02

Passive

Note: D means Dominance; P means Pleasure; and A means
Arousal.
Judgments were made on 7-point semantic differential scales

(3¼ strongly agree; 73¼ strongly agree with the opponent
adjective).
*Correlation is significant at the 0.05 level (2-tailed).

**Correlation is significant at the 0.01 level (2-tailed).
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arousal value, although the magnitude was less
(Figure 1). The standard error of mean pleasure and
arousal ratings was 0.06 and 0.04, respectively.

In considering the internal reliability of the pilot
study, pleasure and arousal both showed high mutual
consistency, with a Cronbach’s a of 0.85 and 0.73,
respectively. However, the Cronbach’s a for dominance
was only 0.64.

The percentage of variance explained was calculated
by factor analysis, applying the maximum likelihood
method and varimax rotation (Table 4). The first two
factors account for 26.06% and 22.40% of the variance
respectively, while the third factor only accounts for
5.46% of the variance. In considering the factor loadings
of the semantic differential item pairs (Table 5), the first
factor roughly corresponds to arousal and the second
factor to pleasure. The third factor does not have a clear
interpretation. The first four factor loadings of the
pleasure dimension provided the highest internal relia-
bility, with a Cronbach’s a of 0.91. The first four factor
loadings of the arousal dimension also provided the
highest reliability, with the same Cronbach’s a of 0.91.

3.5 Discussion

The results identified a number of problems with the
dominance dimension, ranging from high correlation
with arousal to a lack of reliability. The inconsistency in
measuring dominance (Cronbach’s a¼ 0.64) indicated
the dimension to be a candidate for removal from the
index, because values for Cronbach’s a below 0.70 are
generally not considered to represent a valid concept.
This was confirmed by the results of factor analysis: a
general pleasure–arousal–dominance index with six
opponent adjective pairs for each of the three dimensions
was reduced to a pleasure–arousal index with four

opponent adjective pairs for each of the two dimensions.
These remaining factors were shown to have high
reliability (Cronbach’s a¼ 0.91).

Given that these results were based on only 10 songs, a
larger study with more songs is called for to confirm the
extent to which these results are generalizable. (In fact, it
would be worthwhile to develop from scratch a new
emotion index just for music, though this would be an
endeavour on the same scale as the development of
PAD.) Nevertheless, the main focus of this paper is on
developing an algorithm for accurately predicting human
emotional responses to music. Therefore, the promising
results from this section were deemed sufficient to
provide a provisional index to proceed with the next
survey, which collected pleasure and arousal ratings of

Fig. 1. Participants’ mean PAD ratings for the 10 songs.

Table 5. Rotated factor matrixa.

Factor

1 2 3

A. Excited–Calm 0.86 0.07 0.10

A. Active–Passive 0.85 0.12 0.16
A. Stimulated–Relaxed 0.81 70.04 0.15
A. Frenzied–Sluggish 0.81 0.10 0.05

D. Outgoing–Reserved 0.76 0.14 0.24
D. Dominant–Submissive 0.69 70.08 0.27
A. Tense–Placid 0.56 70.44 70.17

D. Controlling–Controlled 0.43 0.00 0.40
A. Aroused–Unaroused 0.37 0.37 0.31
P. Happy–Unhappy 0.12 0.85 0.07
P. Positive–Negative 70.01 0.85 0.13

P. Satisfied–Unsatisfied 70.05 0.81 0.24
P. Pleased–Annoyed 70.17 0.79 0.21
D. Receptive–Resistant 70.15 0.62 0.42

P. Jovial–Serious 0.35 0.51 70.05
P. Contented–Melancholic 0.15 0.48 0.01
D. Influential–Influenced 0.13 0.13 0.37

D. Autonomous–Guided 0.16 0.14 0.27

Note: P means pleasure; A means arousal; and D means
Dominance.
Extraction Method: Maximum Likelihood.

Rotation Method: Varimax with Kaiser Normalization.
aRotation converged in 5 iterations.

Table 4. Total variance explained.

Extraction sums of squared loadings

Component Total % of Variance Cumulative %

1 4.69 26.06 26.06
2 4.03 22.40 48.46

3 0.98 5.46 53.92

Note: Extraction method: Maximum likelihood.
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100 song excerpts from 85 participants to benchmark the
predictive accuracy of several combinations of algo-
rithms. Therefore, in the next survey only eight semantic
differential item pairs were used. Because the results
indicate that the dominance dimension originally pro-
posed by Mehrabian and Russell (1974) is not informa-
tive for music, it was excluded from further
consideration.

The speed at which participants completed the
semantic differential scales varied greatly; from less than
two minutes for each scale to just over three minutes.
Consequently, this part of the session could range from
approximately 20 min to over 30 min. A few participants
grew impatient while waiting for others. Adopting the
new index would cut by more than half the time required
to complete the semantic differential scales for each
excerpt. To allow participants to make efficient use of
their time, the next survey was self-administered at the
website, so that participants could proceed at their own
pace.

4. Survey: ratings of 100 excerpts for pleasure
and arousal

A number of factors must be in place to evaluate
accurately the ability of different algorithms to predict
listeners’ emotional responses to music: the development
of an index or scale for measuring emotional responses
that is precise, accurate, reliable, and valid; the collection
of ratings from a sufficiently large sample of participants
to evaluate the algorithm; and the collection of ratings on
a sufficiently large sample of songs to ensure that the
algorithm can be applied to the diverse genres, instru-
mentation, octave and tempo ranges, and emotional
colouring typically found in listeners’ music libraries.

In this section the index developed in the previous
section determines the participant ratings collected on
excerpts from 100 songs. Given that these songs
encompass 65 artists and 15 genres (see below) and were
drawn from the Thomson corpus, which itself is based on
a sample from a number of individual listeners, the song
excerpts should be sufficiently representative of typical
digital music libraries to evaluate the performance of
various algorithms. However, a commercial system
should be based on a probability sample of music from
listeners in the target market.

4.1 Song segment length

An important first step in collecting participant ratings is
to determine the appropriate unit of analysis. The
pleasure and arousal of listening to a song typically
changes with its musical progression. If only one set of
ratings is collected for the entire song, this leads to a
credit assignment problem in determining the pleasure

and arousal associated with different passages in a song
(Gabrielsson & Juslin, 2002). However, if the pleasure
and arousal associated with a song’s component passages
is known, it is much easier to generalize about the
emotional content of the entire song. Therefore, the unit
of analysis should be participants’ ratings of a segment of
a song, and not the entire song.

But how do we determine an appropriate segment
length? In principle, we would like the segment to be as
short as possible so that our analysis of the song’s
dynamics can likewise be as fine grained as possible. The
expression of a shorter segment will also tend to be more
homogeneous, resulting in higher consistency in an
individual listener’s ratings. Unfortunately, if the seg-
ment is too short, the listener cannot hear enough of it to
make an accurate determination of its emotional content.
In addition, ratings of very short segments lack
ecological validity because the segment is stripped of its
surrounding context (Gabrielsson & Juslin, 2002). Given
this trade-off, some past studies have deemed six seconds
a reasonable length to get a segment’s emotional gist (e.g.
Pampalk, 2001, Pampalk et al., 2002), but further studies
would be required to confirm this. Our concern with
studies that support the possibility of using segments
shorter than this (e.g. Peretz, 2001; Watt & Ash, 1998) is
that they only make low precision discriminations (e.g.
happy–sad) and do not consider ecological validity. So in
this section, a 6 s excerpt was extracted from each of 100
songs in the Thomson corpus.

4.2 Survey goals

The purpose of the survey was

(1) to determine how pleasure and arousal are dis-
tributed for the fairly diverse Thomson corpus and
the extent to which they are correlated;

(2) to assess interrater agreement by gauging the
effectiveness of the pleasure–arousal scale developed
in the previous section;

(3) to collect ratings from enough participants on
enough songs to make it possible to evaluate an
algorithm’s accuracy at predicting the mean parti-
cipant pleasure and arousal ratings of a new,
unrated excerpt;

(4) to develop a visual representation of how listeners’
pleasure and arousal ratings relate to the pitch,
rhythm, and loudness of song excerpts.

4.3 Methods

4.3.1 Participants

There were 85 participants, of whom 46 were male and 39
were female and 53 were 18 to 25 years old (see Table 6).
The majority of the participants were the same students
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as those recruited in the previous section: 44 were
recruited from introductory undergraduate music classes
and 28 were recruited from graduate and undergraduate
human–computer interaction classes. Thirteen additional
participants were recruited from the local area. As
before, all participants had at least moderate experience
with digital music files.

Participants were required to agree to an online study
information sheet containing the same information as the
consent form in the previous study except for the
updated procedure. Participating students received extra
credit.

4.3.2 Music samples

Six second excerpts were extracted from the first 100
songs of the Thomson Music Index Demo corpus of 128
songs (see Table 7). The excerpts were extracted 90 s into
each song. The excerpts were screened to remove silent
moments, low sound quality, and offensive lyrics. As a
result eight excerpts were replaced by excerpts from the
remaining 28 songs.

4.3.3 Procedures

The study was a self-administered online survey made
available during December 2006. Participants were
recruited by an email that contained a hyperlink to the
study. Participants were first presented with the online
study information sheet including a note instructing them
to have speakers or a headset connected to the computer
and the volume set to a comfortable level. Participants
were advised to use a high-speed Internet connection.
The excerpts were presented using an audio player
embedded in the website. Participants could replay an
excerpt and adjust the volume using the player controls
while completing the pleasure and arousal semantic
differential scales. The opposing items were determined
in the previous study: happy–unhappy, pleased–annoyed,
satisfied–unsatisfied, and positive–negative for pleasure
and stimulated–relaxed, excited–calm, frenzied–sluggish,
and active–passive for arousal. The music files were
presented in random order for each participant. The time
to complete the 100 songs’ 6 s excerpts and accompany-
ing scales was about 20 to 25 min.

4.4 Results

Figure 2 plots the 85 participants’ mean pleasure and
arousal ratings for the 100 song excerpts. The mean
pleasure rating across all excerpts was 0.46 (SD¼ 0.50),
and the mean arousal rating across all excerpts was 0.11
(SD¼ 1.23). Thus, there were much greater differences in
the arousal dimension than in the pleasure dimension.
The standard deviation for individual excerpts ranged
from 1.28 (song 88) to 2.05 (song 12) for pleasure
(M¼ 1.63) and from 0.97 (song 33) to 1.86 (song 87) for
arousal (M¼ 1.32). The average absolute deviation was
calculated for each of the 100 excerpts for both pleasure

Table 6. Survey participants.

Age Female Male

18–25 28 25
26–35 5 13

36–45 5 6
45þ 1 2

Subtotal: 39 46
Total: 85

Table 7. Training and testing corpus.

Genres Songs Artists

Rock 24 20
Pop 14 12

Jazz 14 6
Electronic 8 3
Funk 6 2

R&B 6 4
Classical 5 2
Blues 4 3

Hip Hop 4 1
Soul 4 2
Disco 3 2
Folk 3 3

Other 5 5

Total 100 65 Fig. 2. Participant ratings of 100 songs for pleasure and arousal

with selected song identification numbers.
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and arousal. The mean of those values was 1.32 for
pleasure (0.81 in z-scores) and 1.03 for arousal (0.78 in z-
scores). Thus, the interrater reliability was higher for
arousal than for pleasure. As Figure 3 shows, the
frequency distribution for pleasure was unimodal and
normally distributed (K-S test¼ 0.04, p40.05); however,
the frequency distribution for arousal was not normal
(K-S test¼ 0.13, p¼ 0.000) but bimodal: songs tended to
have either low or high arousal ratings. The correlation
for pleasure and arousal was 0.31 (p¼ 0.000), which is
similar to the 0.33 correlation of the previous survey. The
standard error of mean of pleasure and arousal ratings
was 0.02 and 0.02, respectively.

A representation was developed to visualize the
difference between excerpts with low and high pleasure
and excerpts with low and high arousal. This is referred
to as an emotion-weighted visualization (see Appendix).
The spectrum histograms of 100 song excerpts were
multiplied by participants’ mean ratings of pleasure in z-
scores and summed (Figure 4) or multiplied by partici-
pants’ mean ratings of arousal and summed (Figure 5).
Figure 4 shows that frequent medium-to-loud mid-range

pitches tend to be more pleasurable, while frequent low
pitches and soft high pitches tend to be less pleasurable.
Subjective pitch ranges are constituted by critical bands
in the bark scale. Lighter shades indicate a higher
frequency of occurrence of a given loudness and pitch
range. Figure 5 shows that louder higher pitches tend to
be more arousing than softer lower pitches. Figures 6 and
7 shows the fluctuation pattern representation for
pleasure and arousal, respectively. Figure 6 shows that
mid-range rhythms (modulation frequency) and pitches
tend to be more pleasurable. Figure 7 shows that faster

Fig. 3. Frequency distributions for pleasure and arousal. The
frequency distribution for pleasure is normally distributed, but

the frequency distribution for arousal is not.

Fig. 4. The sum of the spectrum histograms of the 100 song
excerpts weighted by the participants’ mean ratings of pleasure.
Critical bands in bark are plotted versus loudness. Higher

values are lighter.

Fig. 5. The sum of the spectrum histograms of the 100 song
excerpts weighted by the participants’ mean ratings of arousal.
Critical bands in bark are plotted versus loudness. Higher

values are lighter.
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rhythms and higher pitches tend to be more arousing.
These representations are explained in more detail in the
next section.

4.5 Discussion

The 85 listeners’ ratings of the 100 songs in the Thomson
corpus show the pleasure index to be normally dis-
tributed but the arousal index to be bimodal. The
difference in the standard deviations of the mean pleasure

and arousal ratings indicates a much greater variability
in the arousal dimension than in the pleasure dimension.
For example, the calm–excited distinction is more
pronounced than the happy–sad distinction. It stands
to reason that interrater agreement would be higher for
arousal than for pleasure because arousal ratings are
more highly correlated with objectively measurable
characteristics of music (e.g. fast tempo, loud). Further
research is required to determine the extent to which the
above properties characterize music for the mass market
in general. The low standard error of the sample means
indicates that sufficient data was collected to proceed
with an analysis of algorithms for predicting emotional
responses to music.

5. Evaluation of emotion prediction method

Section 2 reviewed a number of approaches to predicting
the emotional content of music automatically. However,
these approaches provided low precision, quantizing
each dimension into only two or three levels. Accuracy
rates were also fairly low, ranging from performance just
above chance to 86.3%. The purpose of this section is to
develop and evaluate algorithms for making accurate
real-valued predictions for pleasure and arousal that
surpass the performance of approaches found in the
literature.

5.1 Acoustic representation

Before applying general dimensionality reduction and
statistical learning algorithms for predicting emotional
responses to music, it is important to find an appropriate
representational form for acoustic data. The pulse code
modulation format of compact discs and WAV files,
which represents signal amplitude sampled at uniform
time intervals, provides too much information and
information of the wrong kind. Hence, it is important
to re-encode PCM data to reduce computation and
accentuate perceptual similarities.

This section evaluates five representations implemen-
ted by Pampalk et al. (2003) and computed using the MA
Toolbox (Pampalk, 2006). Three of the methods – the
spectrum histogram, periodicity histogram, and fluctuation
pattern – are derived from the sonogram, which models
characteristics of the outer, middle, and inner ear. The
first four methods also lend themselves to visualization
and, indeed, the spectrum histogram and fluctuation
pattern were used in the previous section to depict
pleasure and arousal with respect to pitch and loudness
and pitch and rhythm. The fifth method, the Mel
frequency cepstral coefficients, which is used frequently
in speech processing, does not model outer and middle
ear characteristics. Pampalk et al. (2003) propose that, to
compare acoustic similarity accurately, it is important

Fig. 6. The sum of the fluctuation pattern of the 100 song
excerpts weighted by the participants’ mean ratings of pleasure.

Critical bands in bark are plotted versus loudness. Higher
values are lighter.

Fig. 7. The sum of the fluctuation pattern of the 100 song
excerpts weighted by the participants’ mean ratings of arousal.
Critical bands in bark are plotted versus loudness. Higher

values are lighter.
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that the acoustic representation retain audio information
related to hearing sensation and not other, extraneous
factors. This is one reason why it is good to use the
sonogram as a starting point. In addition, visualizations
of the sonogram, spectrum histogram, periodicity histo-
gram, and fluctuation pattern are easier for untrained
musicians to interpret than visualizations of the MFCC.

The sonogram was calculated as follows: (1) 6 s
excerpts were extracted 90 s into each MP3 file,
converted to PCM format, and down sampled to 11
kHz mono. (2) Amplitude data were reweighted accord-
ing to Homo sapiens’ heightened sensitivity to midrange
frequencies (3–4 kHz) as exhibited by the outer and
middle ear’s frequency response (Terhardt, 1979, cited in
Pampalk et al., 2003). (3) The data was next transformed
into the frequency domain, scaled based on human
auditory perception, and quantized into critical bands.
These bands are represented in the bark scale. Above
500 Hz, bark bands shift from constant to exponential
width. (4) Spectral masking effects were added. Finally,
(5) loudness information was converted to sone, a unit of
perceived loudness, and normalized so that 1 sone is the
maximum loudness value. The sonogram is quantized to
a sample rate (time interval) of 86 Hz, the frequency is
represented by 20 bark bands, and the loudness is
measured in sone.

The spectrum histogram counts the number of times
the song excerpt exceeds a given loudness level for each
frequency band. As with the sonogram, loudness is
measured in sone and frequency in bark. Pampalk et al.
(2003) report that the spectrum histogram offers a useful
model of timbre. The periodicity histogram represents
the periodic occurrence of sharp attacks in the music for
each frequency band. The fluctuation pattern derives
from a perceptual model of fluctuations in amplitude
modulated tones (Pampalk, 2006). The modulation
frequencies are represented in Hz. The Mel frequency
cepstral coefficients define tone in mel units such that a
tone that is perceived as being twice as high as another
will have double the value. This logarithmic positioning
of frequency bands roughly approximates the auditory
response of the inner ear. However, MFCC lacks an
outer and middle ear model and does not represent
loudness sensation accurately. Twenty Mel frequency
cepstral coefficients were used in this study.

5.2 Statistical learning methods

Even after re-encoding the acoustic signal in one of the
above forms of representation, each excerpt is still
represented in a subspace of high dimensionality. For
example, the fluctuation pattern for a 6 s excerpt has
1200 real-valued dimensions. Thus, past research has
often divided the process of categorization into two
stages: the first stage reduces the dimensionality of the
data while highlighting salient patterns in the dataset.

The second stage performs the actual categorization. A
linear model, such as least-squares regression, lends itself
to a straightforward statistical analysis of the results
from the first stage. It is, therefore, used in this study to
compare alternative methods of data reduction. Regres-
sion also requires far more observations than predictor
variables, especially if the effect is not large (Miles &
Shevlin, 2001), which is another reason for dimension-
ality reduction.

The most common method is principal components
analysis. The dataset is rotated so that its direction of
maximal variation becomes the first dimension, the next
direction of maximal variation in the residuals, ortho-
gonal to the first, becomes the second dimension, and
so on. After applying PCA, dimensions with little
variation may be eliminated. Pampalk (2001) used this
method in Islands of Music. However, PCA may offer
poor performance for datasets that exhibit nonlinear
relations.

Many nonlinear dimensionality reduction algorithms,
such as nonlinear principal components analysis, are
based on gradient descent and thus are susceptible to
local minima. Recently, a couple of unsupervised
learning algorithms have been developed that guarantee
an asymptotically optimal global solution using robust
linear decompositions: nonlinear dimensionality reduc-
tion by isometric feature mappings (ISOMAP), kernel
ISOMAP, and locally linear embedding (LLE).

ISOMAP uses Dykstra’s shortest path algorithm to
estimate the geodesic distance between all pairs of data
point along the manifold (Tenenbaum et al., 2000). It
then applies the classical technique of multidimensional
scaling to the distance matrix to construct a lower
dimensional embedding of the data. LLE constructs a
neighbourhood-preserving embedding from locally lin-
ear fits without estimating distances between far away
data points (Roweis & Saul, 2000). Choi and Choi
(2007) develop a robust version of ISOMAP that
generalizes to new data points, projecting test data
onto the lower dimensionality embedding by geodesic
kernel mapping. In addition to this generalization
ability, which is based on kernel PCA, kernel ISOMAP
improves topological stability by removing outliers.
Outliers can wreak havoc with shortest-path estimates
by creating short-circuits between distant regions of the
manifold.

Thus, we chose to compare PCA and kernel ISOMAP,
because we believe they are representative of a larger
family of linear and nonlinear dimensionality reduction
approaches. We also chose to compare these methods to
an approach that does not reduce the dimensionality of
the acoustic representation of a test excerpt but instead
compares it directly to an emotion-weighted representa-
tion of all training excerpts – the emotion-weighted
visualization of the previous section – as explained later
in this section and in the Appendix. This approach
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results in one predictor variable per acoustic representa-
tion per emotion.

5.3 Survey goals

This section compares the performance of four different
methods of automatically estimating a listener’s pleasure
and arousal for an unrated song excerpt: (1) nearest
neighbour, (2) linear and (3) nonlinear dimensionality
reduction and linear model prediction, and (4) distance
from an emotion-weighted representation and linear
model prediction. Linear dimensionality reduction by
principle components analysis is compared with non-
linear dimensionality reduction by kernel ISOMAP to
provide predictor variables for multiple linear regression.

Hence, this section has two main goals:

(1) to determine whether continuously valued mean
pleasure and arousal ratings of song excerpts can be
accurately predicted by automatic means based on
previously-rated excepts from other songs; and

(2) to determine which combination of dimensionality
reduction and statistical learning algorithms pro-
vides the highest predictive accuracy.

5.4 Evaluation method of predictive accuracy

The jackknife approach (Yang & Robinson, 1986) was
used to calculate the average error in the system’s
prediction. This was used to calculate the average
prediction error for the nearest neighbour method and to
compare the performance of PCA and kernel ISOMAP.
Regression was performed to calculate the least squares fit
of the participants’ mean ratings of pleasure and arousal
for the excerpts from all but the first song on the predictor
variables for all but the first song. The pleasure and
arousal ratings for the first song were then estimated based
on the predictor variables for the first song and compared
to the participants’ actual mean ratings for the first
song. This difference indicated the prediction error for
the first song. This process was repeated for the 2nd
through the 100th song. Thus, the difference between
participants’ actual mean ratings of pleasure and arousal
and the ratings predicted using the proposed approach
with nearest neighbour, PCA, or kernel ISOMAP could be
calculated for all 100 songs. To simplify method compar-
ison, all participant ratings were converted to z-scores, so
that prediction error values could also be given in z-scores.

5.5 Prediction error using the nearest neighbour method

Before comparing PCA and kernel ISOMAP, it is useful
to consider the prediction error for a simpler method,
which may serve as a benchmark. The nearest neighbour
method was selected for this purpose. The predicted
value of pleasure and arousal for a given excerpt is

determined by the participant mean of the nearest
excerpt in a given data representation space. Although
various metrics can be used for distance, the L2 norm was
chosen (Euclidean distance). For pleasure, the prediction
error was 0.48 (in z-scores) in the spectrum histogram
space, 0.49 in the periodicity histogram space, 0.52 in the
sonogram space and Mel frequency cepstral coefficients
space, and 0.54 in the fluctuation pattern space. For
arousal, the prediction error was 0.99 in the sonogram
space, 0.83 in the spectrum histogram space, 1.26 in the
periodicity histogram space, 0.92 in the fluctuation
pattern space, and 0.96 in the Mel frequency cepstral
coefficients space. The prediction error was also calcu-
lated after applying the dimensionality reduction meth-
ods, but the results were roughly similar.

5.6 Comparison of PCA and kernel ISOMAP

dimensionality reduction

Figures 8 and 9 show that nonlinear dimensionality
reduction by kernel ISOMAP provides predictor vari-
ables that result in slightly more accurate regression
estimates of the participant mean for pleasure than linear
dimensionality reduction by PCA. Although the figures
only list results for subspaces ranging in dimensionality
from 1 to 30, prediction error was calculated for all
dimensionality N that were not rank deficient (i.e. 1 to 97
for all data representation spaces except periodicity
histogram, which was 1 to 4). For pleasure, the
prediction error obtained by using PCA was 0.80 (in z-
scores, N¼ 1) when applied to the sonograms of the 100
excerpts, 0.81 (N¼ 1) when applied to the spectrum
histograms, 0.88 (N¼ 1) when applied to the periodicity
histograms, 0.81 (N¼ 1) when applied to the fluctuation
patterns, and 0.82 (N¼ 1) when applied to the Mel

Fig. 8. The average error in predicting the participant mean for

pleasure when using PCA for dimensionality reduction.
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frequency cepstral coefficients (Figure 8). For pleasure,
the prediction error obtained by kernel ISOMAP was
0.77 (N¼ 1) when applied to the sonograms, 0.74 (N¼ 3)
when applied to the spectrum histograms, 0.81
(N¼ 1) when applied to the periodicity histograms, 0.77
(N¼ 5) when applied to the fluctuation patterns, and
0.77 (N¼ 9) when applied to the Mel frequency cepstral
coefficients (Figure 9).

Figures 10 and 11 show that nonlinear dimensionality
reduction by kernel ISOMAP provides predictor vari-
ables that result in much more accurate regression
estimates of the participant mean for arousal than linear
dimensionality reduction by PCA. For arousal, the

prediction error obtained by PCA was 0.92 (in z-scores,
N¼ 3) when applied to the sonograms of the 100
excerpts, 0.91 (N¼ 9) when applied to the spectrum
histograms, 0.98 (N¼ 1) when applied to the periodicity
histograms, 0.87 (N¼ 15) when applied to the fluctuation
patterns, and 0.88 (N¼ 12) when applied to the Mel
frequency cepstral coefficients (Figure 10). For arousal,
the prediction error obtained by kernel ISOMAP was
0.40 (N¼ 3) when applied to the sonograms of the 100
excerpts, 0.37 (N¼ 7) when applied to the spectrum
histograms, 0.62 (N¼ 1) when applied to the periodicity
histograms, 0.44 (N¼ 5) when applied to the fluctuation
patterns, and 0.42 (N¼ 13) when applied to the Mel
frequency cepstral coefficients (Figure 11).

Prediction error with PCA was highest when using the
periodicity histogram and was rather similar when using
the other forms of data representation. Prediction error
with kernel ISOMAP was also highest when using the
periodicity histogram and lowest when using the
spectrum histogram. In comparing the best combination
of data representation form and subspace dimensionality
for PCA and kernel ISOMAP, prediction error for
pleasure was 8% higher for PCA and prediction error for
arousal was 235% higher for PCA. Although both PCA
and kernel ISOMAP had consistently lower prediction
error than nearest neighbour for pleasure, for arousal
kernel ISOMAP had consistently lower prediction error
than nearest neighbour, and nearest neighbour had
consistently lower prediction error than PCA.

5.7 Prediction error using the distance from an

emotion-weighted representation

A representation for pleasure and arousal was separately
developed for each of the five forms of data representa-

Fig. 9. The average error in predicting the participant mean for
pleasure when using kernel ISOMAP for dimensionality

reduction.

Fig. 10. The average error in predicting the participant mean
for arousal when using PCA for dimensionality reduction.

Fig. 11. The average error in predicting the participant mean
for arousal when using kernel ISOMAP for dimensionality

reduction.
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tion by summing up the data representation of 99
training song excerpts weighted by the participants’
mean ratings of either pleasure or arousal. (Figures 4 to 7
of the previous section plotted the emotion-weighted
spectrum histogram and fluctuation pattern representa-
tions for visualization purposes.) The Euclidean distance
(L2 norm) between each excerpt’s data representation
and the emotion-weighted representation was calculated
(see Appendix). These values served as predictor
variables for linear least squares model fitting of the
emotion responses. Using the jackknife method, the
pleasure or arousal of a test excerpt could then be
estimated by least squares based on its distance from the
emotion-weighted representation.

For pleasure, the prediction error was 0.39 (in z-
scores) for sonograms, 0.75 for spectrum histograms,
0.44 for periodicity histograms, 0.82 for fluctuation
patterns, and 0.51 for Mel frequency cepstral coefficients.
For arousal, the prediction error was 0.29 for sonograms,
0.89 for spectrum histograms, 0.85 for periodicity
histograms, 0.29 for fluctuation patterns, and 0.31 for
Mel frequency cepstral coefficients. Thus, when all five
predictor variables were used together, the prediction
error was 0.17 for pleasure and 0.12 for arousal using the
jackknife method.

A regression analysis of the 100 excerpts selected the
five predictor variables for inclusion in a linear model for
pleasure (r2¼ 0.95, F¼ 367.24, p¼ 0.000) and for arousal
(r2¼ 0.98, F¼ 725.71, p¼ 0.000).

5.8 Discussion

The analyses of this section showed some interesting
results. Kernel ISOMAP resulted in slightly higher
predictive accuracy for pleasure and much higher
predictive accuracy for arousal than PCA. However,
the proposed technique of using an emotion-weighted
representation significantly outperformed either method.
Predictor variables for pleasure and arousal were derived
from a test excerpt’s distance from an emotion-weighted
representation of training excerpts in the subspaces of the
five acoustic representations. Prediction error was 0.17
for pleasure and 0.12 for arousal in z-scores. For all three
methods, accuracy for arousal tended to be higher than
for pleasure, which is consistent with the results of the
previous section. This is probably because pleasure
judgments are more subjective than arousal judgments.

Prediction error of 0.17 and 0.12 exceeds human
performance, which on average is 0.81 for pleasure and
0.78 for arousal in z-scores, as reported in the previous
section. However, it would be unfair to the human
listener to claim that the algorithm is several times more
accurate at predicting mean pleasure and arousal ratings
of a new excerpt for which it has no human data. This is
because the algorithm is permitted to use a continuous
scale for each dimension, while participants were

required to use four seven-point semantic differential
scales. In addition, we only asked the human listeners to
give their own ratings of songs and not to predict how
they thought most other people would rate them.
Therefore, a study requiring listeners to make this
prediction is called for to make a more precise
comparison.

6. Potential applications

We have presented an algorithm for the automatic
prediction of pleasure and arousal ratings in music. But
what can we do with such an algorithm? Its uses are
many.

Integrating the algorithm into digital jukebox applica-
tions would allow listeners to organize their music
libraries in terms of each song’s pleasure and arousal
rating. This could offer listeners a better understanding
and appreciation of their music collection, new ways of
discovering unknown artists and songs, and a means to
create more appealing, meaningful play lists, including
play lists for inducing a certain mood. For example,
putting on high pleasure, high arousal music might be an
appropriate tonic for someone faced with performing a
spring cleaning.

From a commercial standpoint, the algorithm could
benefit music retailers, producers, and artists. Retailers
profit from any method that enables listeners to discover
new pieces of music. As listeners broaden their tastes they
become open to a wider range of music purchases.
Commercially, music producers could use the algorithms
to predict the emotional impact of a song before
releasing it. Artistically, musicians could have a quanti-
tative measure of whether a song they create contains the
intended emotional quality and message. After all, the
song may affect the artist differently from a potential
listener.

Another multi-billion dollar industry, the computer
game industry, continually looks for new ways to grab
people’s attention. This predictive tool could further
research into sound engines that dynamically adjust the
music to match the in-game mood (Livingstone &
Brown, 2005). Computer games could be linked to a
player’s music library to create a soundtrack that is
appropriate for what is happening in the game.

Movies have long used music to create or heighten
the emotional impact of scenes. Automatic emotion
estimation could be used to predict the emotional
response of moviegoers to a musically-scored scene,
thus saving time and money normally spent on market
research. It could also be used to find pieces of music
that had an emotional tone appropriate to a particular
scene. Other research includes analysing both video and
audio in an attempt to automatically create music
videos (Foote et al., 2002).
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Music is also an educational tool. According to Picard
(1997), emotions play a role in learning, decision making,
and perception. Educators have studied its power to
reinforce learning (Standley, 1996) or improve behaviour
and academic performance in children with behavioural
or emotional difficulties (Hallam & Price, 1998; Hallam
et al., 2002; Črn�cec et al., 2006). The ability to predict a
song’s emotional effect could enhance the use of music in
education.

Outside the classroom, music is used as environmental
stimuli. The shopping and service industries have studied
background music’s broad effects on consumer beha-
viour, including time spent on premises, amount spent,
and improved attitudes – in both retail outlets (Alpert &
Alpert, 1990; Oakes, 2000; Chebat et al., 2001) and
restaurants (Caldwell & Hibbert, 2002). Outside of the
store, music influences consumers’ affective response to
advertisements and their ability to recall its content
(Oakes & North, 2006). When strong emotions accom-
pany an event, it becomes easier to remember (Levine &
Burgess, 1997; Dolan, 2002). The algorithm can help
businesses and advertisers more critically evaluate music
selections for the intended environment and message.
This in turn will increase customer satisfaction and
corporate profits.

Predicting the emotional response of patients to music
is crucial to music therapy. Its applications include
setting a calming environment in hospital rooms (Preti &
Welsh, 2004), treating chronic pain such as headaches
(Risch et al., 2001; Nickel et al., 2005), and improving
recovery from surgery (Giaquinto et al., 2006). The
calming effects of music can have a positive effect on
autonomic processes. It has been used to regulate heart
rate in heart patients (Evans, 2002; Todres, 2006) and
reduce distress and symptom activity (Clark et al., 2006).

7. Conclusion

This paper has made three main contributions to
research on the automatic prediction of human emo-
tional response to music.

. The development of a reliable emotion index for music.
In the application of the PAD index to music, the pilot
study identified as unreliable two opponent adjective
pairs for each of the pleasure and arousal dimensions
(Section 3). In addition, it identified the entire
dominance dimension as unreliable. The elimination
of the unreliable adjective pairs and dimension resulted
in a new index that proved highly reliable for the
limited data of the pilot study (Cronbach’s a¼ 0.91 for
pleasure and arousal). The reliability of the index was
confirmed in the follow up survey.

. The development of a technique to visualize emotion
with respect to pitch, loudness, and rhythm. The

visualizations showed that mid-range rhythms and
medium-to-loud mid-range pitches tend to be much
more pleasurable than low pitches and soft high
pitches (Section 4). Unsurprisingly, they also showed
that faster rhythms and louder higher pitches tend to
be more arousing than slower rhythms and softer
lower pitches. (See Figures 4, 5, 6, and 7.) All
visualizations were expressed in terms of the sub-
jective scales of the human auditory system.

. The development of an algorithm to predict emotional
responses to music accurately. Predictor variables
derived from a test excerpt’s distance from emotion-
weighted visualizations proved to be the most accurate
among the compared methods at predicting mean
ratings of pleasure and arousal (Section 5). They also
appear to have exceeded the accuracy of published
methods (Section 2.3), though before making that
claim direct comparisons should first be made using
the same index, music corpus, and participant data.
Thus, the proposed technique holds promise for
serious commercial applications that demand high
accuracy in predicting emotional responses to music.
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Appendix: Emotion-weighted visualization and
prediction method

The proposed method of calculating emotion-weighted
visualizations of a set of music excerpts for different
types of acoustic representations and using the visualiza-
tions to predict the emotion of a new, unrated music
excerpt is given below.

A. Human data collection

Step 1. K listeners rate N music excerpts using a valid
emotion index.

B. Index value calculation

Step 2. An index corresponding to a dimension of
emotion is calculated from the ratings.

Step 3. If K41, listeners’ index values are averaged for
each music excerpt.

Step 4. Index values are converted to z-scores.

C. Emotion-weighted visualization

Step 5. Each type of acoustic representation is
calculated for each music excerpt. Types may include,
but are not limited to, the sonogram, spectrum
histogram, periodicity histogram, fluctuation pattern,
and Mel frequency cepstral coefficients.

Step 6. For a given type of acoustic representation,
each acoustic representation is multiplied by the index
value (in z-scores) for the corresponding music excerpt
and summed together.

The result is an emotion-weighted visualization of the
excerpts as a whole for each type of acoustic representa-
tion.

D. Training the predictive algorithm

Step 7. For a given type of acoustic representation, the
Euclidean distance (L2 norm) of each acoustic
representation to the emotion-weighted visualization
is calculated.

These distance values are emotion predictor variables.

Step 8. Multiple linear regression is used to calculate
regression coefficients for the emotion dimension using
the emotion predictor variables and emotion index
values (in z-scores) as the outcome variable.

E. Making predictions

Step 9. The Euclidean distance (L2 norm) from the
acoustic representations of a new, unratedmusic excerpt
to the emotion-weighted visualizations is calculated.

These are emotion predictor variables for the new,
unrated excerpt.

Step 10. The dot product of the emotion predictor
variables for the new excerpt and the regression
coefficients (from step 8) is calculated.

This is the predicted emotion index value of the new
music excerpt.
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