
C
omputer vision research is highly
applicable to monitoring people in
public places.1,2 Automatic moni-
toring has become more prevalent

in part because the cost of mounting cameras has
now been dwarfed by the cost of hiring operators
to watch them.

To improve battlefield awareness, for instance,
the US Defense Advanced Research Projects
Agency (DARPA) sponsored the Video Surveillance
and Monitoring (VSAM) project to develop auto-
mated technologies for monitoring people and
vehicles.3 These same technologies can be applied
to visual surveillance for law enforcement or pri-
vate security. The project’s basic strategy is to

detect moving regions in images by background
subtraction and to track them with calibrated
cameras. Contextual information makes the sys-
tem more robust.

Along similar lines, several European academ-
ic and industrial institutions have developed the
ADVISOR (Annotated Digital Video for Intelligent
Surveillance and Optimised Retrieval) system to
analyze video feeds from cameras at a subway
station in real time. The system—tested in
Barcelona, Brussels, and London—warns opera-
tors of dangerous situations such as crowding and
fighting in addition to ongoing acts of vandalism
and fare evasion.4

Separate systems perform model-based people
tracking,5-7 behavior recognition, and crowd
analysis.8 Because the ADVISOR system is model-
based, not memory-based, it relies on models
developed specifically for recognizing particular
kinds of human activity in a subway station.
These models would need to be replaced with dif-
ferent models to recognize other kinds of activi-
ty, such as vehicle traffic or wildlife movement.
In addition, ADVISOR requires accurate camera
calibration to function.

In a significantly different approach to activi-
ty recognition, we’ve developed a calibration-
free, memory-based distributed vision system,
Digital City Surveillance. Before we explain the
specifics of our design, however, we discuss the
system context.

Digital City Project
Apart from enhancing security, people-track-

ing systems can actively support many kinds of
human activity, especially in the sensor-rich,
computer-networked environments being devel-
oped in ubiquitous computing. The Digital City
Project of the Japan Science and Technology
Agency Core Research for Evolutional Science
and Technology (JST CREST) is actively working
with people-tracking systems. This project,
directed by Toru Ishida, explores the systems’
potential for transforming and enhancing peo-
ple’s lives,9 for example, by realizing evacuation
systems for urban disasters.10 The surveillance
system described in this article is part of the
Digital City Project and demonstrates one appli-
cation of people tracking.

We’ve constructed a distributed vision system
for recognizing human activity. Figures 1 and 2
show the multiple camera system installed in the
JR Kyoto subway station concourse. The system
consists of 28 cameras with special mirrors that
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provide undistorted wide-view images (see
Figure 3, next page), 12 in the concourse and 16
on the platform. (The 16 wide-view vision sen-
sors mounted on the platform weren’t used by
the system we describe.) Figure 3 shows images
taken by the system on the concourse. Figure 2
shows the sensors’ position and coverage. The
system can obtain information about a large
area—by means of these vision sensors—includ-
ing a path, ticket vending machines, ticket gates,
and stairs.

Our surveillance system makes several improve-
ments on ADVISOR and other similar systems:

❚ We developed a new type of wide-view vision
sensor for large public spaces that allows the
same area to be covered with about one-
fourth the number of cameras.

❚ We replaced the separate subsystems for
behavior recognition and crowd estimation
with a single general learning mechanism that
doesn’t require explicitly designed human
models or camera calibration.

❚ We developed a form of attention control
based on feature selection to improve classifi-
cation accuracy and vastly accelerate learning.
When classifying behavior, each support vec-
tor machine (SVM) pays attention to only
those pixels that provide the most informa-
tion gain with respect to making the correct
classification.

Digital City Surveillance focuses on enhancing
learning-based behavior recognition by selecting
the most informative features in a video. Because
the system’s “attention” is directed to these fea-
tures, the mechanism implements a form of
attention control.

Figure 4 summarizes our approach. First, the
system detects moving pixels by background sub-

39

Figure 1. Twelve wide-view vision sensors are attached to the ceiling of the

concourse at the JR Kyoto subway station. Each sensor consists of a charge-

coupled device (CCD) video camera and a nonparametric convex mirror. This

system was developed in the Digital City Project supported by the Japan

Science and Technology Agency.

Figure 2. The diagram

on the left shows where

the wide-view vision

sensors are located in

the subway concourse.

For illustrative

purposes, the square on

the right shows a

mosaic derived from

simultaneous

recordings from 12

arbitrarily placed

vision sensors. The

camera positions aren’t

explicitly represented.



traction and obtains binary images (see Figure
5b). The average of a series of binary images,
weighted by recency, lets us produce an input
vector that includes motion information (Figure
5c). A human operator then classifies these exam-
ples as positive or negative instances of nine
kinds of events. The system constructs discrimi-
nant functions for the given examples using nine
support vector machines. One of the merits of
support vector machines is that fewer training
examples are needed than with other, simpler
memory-based approaches (for example, nearest
neighbor). The system reduces the size of the
parameter space by a feature selection process.

Memory-based recognition: Rationale
The most common approach to detecting

human positions and behavior is based on fea-

tures. In this approach, targets are segmented
from the original sensory signal, and extracted
features from targets are matched based on mod-
els of human behaviors. However, if the envi-
ronment and behavior to be recognized aren’t
known, it’s difficult to design a robust segmenta-
tion algorithm and complex features that will be
able to detect these unknown behaviors.

In the model-based approach, such as that of
the ADVISOR system, system designers can’t antic-
ipate all the features that will be necessary for
detecting behaviors, unless they know the behav-
iors in advance. Therefore, system designers
might not be able to implement all the necessary
feature detectors beforehand.11,12 This makes the
system susceptible to the symbol grounding prob-
lem, because a need arises for symbols but the sys-
tem is unable to connect them to features of the
world. In addition, maintaining a correspondence
between a complex, symbolic model and a con-
tinuously changing environment might create
unnecessary computational demands, which has
been identified with the frame problem.13 Thus,
the model-based approach limits behavior recog-
nition to known environments.

A promising alternative is the memory-based
approach14 which uses low-level features and
online learning of target behaviors.15 The system
learns discriminant functions for image features
obtained after background subtraction. This facil-
itates segmentation. After a relatively brief peri-
od of online instruction, the system can function
in environments that were unknown to its
designers, but known to its trainer, who doesn’t
need a technical background.

Digital City Surveillance incorporates a cali-
bration-free behavior recognition method for
multiple camera systems. The system maps data
from the 12 cameras on the concourse to classes,
such as “people are passing through the ticket
gates,” “there are many people in front of the
stairs,” and so on (see Table 1 and Figure 6). An
announcement system provides this information
to station operators in synthesized speech and to
subway users through the Internet.

We’ve adopted a memory-based recognition
approach for this application, which only takes a
couple of hours for a novice to train. Memory-
based approaches derive their recognition results
at least in part from classified data points stored in
memory. The large amounts of memory and high-
speed CPUs now available help us construct the
huge parameter space defined by the 12 cameras,
thus making memory-based image processing fea-
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Figure 3. On the left are

images taken from four

wide-view vision

sensors, which show

people walking in the

JR Kyoto subway

station. On the right is

a compact, dual mirror

version of the wide-view

vision sensor with

identical optics, which

we developed as a

commercial product in

collaboration with

Vstone.
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Figure 4. This diagram summarizes the information processing flow of our

approach. The black arrows signify the training phase, while the lighter

arrows signify the recognition phase. (SVM means support vector machine.)



sible. A memory-based approach lets the system
handle camera data without referencing camera
positions, viewing angles, or fields of view, giving
the nontechnical camera operators unprecedented
freedom in placing and moving cameras.

The system informs the operators about what’s
happening in a subway station by means of a
voice synthesizer and sends text-based updates
through the Internet. (MPEG video samples are
available at http://www.androidscience.org; under

Research Projects, see “Distributed Vision.”) This
kind of system can also act as a perceptual infor-
mation infrastructure for robot navigation16 and
human–robot interaction. We envision that
future subway and train stations will function
safely with fewer personnel by employing
humanlike robots as passenger guides17 and spe-
cial-purpose robots for security, sanitation, and
routine maintenance. Prototype systems have
already addressed all these applications at the
2005 World Exposition in Aichi, Japan.
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Figure 5. Data preprocessing is achieved as follows: (a) A composite image is formed from each video frame from the 12 wide-view

vision sensors in the concourse. There was no attempt to maintain geometrical relations among the cameras. (b) The background is

removed and the images are then binarized. (c) An average of composite images, weighted by recency, is computed. It constitutes the

vector for categorization. (d) For illustrative purposes, the recency-weighted average is shown overlaying the original image.

(a) (b)

(c) (d)

(3)

(2)

(1)

(5)

(4)

Figure 6. The first five

events concern people’s

movement. The arrows

depict their direction of

movement. (The

camera image mosaic

is for illustrative

purposes only.)

Table 1. Recognition tasks for the subway

announcement system.

Task Condition
1 People are (not) going down the stairs.  

2 People are (not) passing through the 

ticket gates.  

3 People are (not) walking from the ticket 

machines to the ticket gates.  

4 People are (not) walking by the wall.  

5 People are (not) going upstairs.  

6 It is (not) crowded.  

7 There are (not) a few people.   

8 There are (not) many people in front of 

the stairs.  

9 There are (not) many people around the 

ticket machines.  
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However, as the sensory space becomes larger
as more cameras are used, a memory-based
approach requires more time to learn to recog-
nize behaviors. In addition, there are many pil-
lars and other occluding objects in the subway
station, rendering parts of the images useless for
behavior recognition.

In response to these factors, we introduce a
form of attention control18 that restricts consid-
eration only to those regions of images relevant
to the recognition of a particular condition as
classified by the teaching signal.19 (Our approach
shouldn’t be confused with the biologically
inspired method of attention control proposed
by Itti et al.20) As we’ll see, attention control dra-
matically reduces computation and somewhat
increases accuracy by statistically selecting which
pixels are worth observing according to the
recognition task. Because each of the nine sup-
port vector machines detects the presence or
absence of a particular condition (see Table 1),
each machine is sensitive to movement in differ-
ent regions of the images.

How the behavior recognition system
works

To cover a large subway station with a rela-
tively small number of cameras, we developed a
wide-view vision sensor using a nonparametric
mirror. The new sensor has an advantage over
omnidirectional cameras because it can be ceil-
ing mounted, and it avoids the distortion of fish-
eye lenses. The system uses attention control to
select the pixels from the 12 wide-view cameras
in the concourse that provide the highest gain in
information for performing each classification
task. A novice station operator can train the sys-
tem in less than three hours.

How the distributed vision sensors work
In most multiple camera applications, increas-

ing viewing areas can cut costs by reducing the
number of cameras needed. To this end, we can

enhance coverage by using wide-angle, fisheye,
or omnidirectional sensors. Previously, we pro-
posed a distributed omnidirectional vision sys-
tem as a perceptual information infrastructure for
monitoring human activity.21 The wide viewing
field of omnidirectional cameras is suitable for
observing targets from various directions. We’ve
developed a real-time human tracking system
that covers a wide area with relatively few omni-
directional cameras.

We’ve also developed several algorithms that
let the distributed omnidirectional vision system
autonomously acquire positional information
among cameras based on the fact that the omni-
directional cameras view each other.22 However,
the cameras must be placed approximately at eye
level (about 160 cm from the ground), because
their field of view is horizontally oriented.
Omnidirectional cameras can’t be used in a busy
public place such as a subway station because
that would obstruct the flow of pedestrians. The
cameras must be attached to the ceiling.

To address this requirement, we developed a
new kind of wide-view vision sensor. Each vision
sensor is made of a mirror that has a special non-
parametric shape and a color CCD camera. The
mirror gives the sensor a broader field of view than
a perspective camera. Therefore, comparatively few
vision sensors are needed to cover a large area (28
instead of about 100). Strictly speaking, these cam-
eras aren’t omnidirectional, because their focus of
expansion isn’t visible for horizontal movements.
In collaboration with Vstone, we developed a com-
pact commercial vision sensor (see Figure 3) with
identical optics to the prototype (see Figure 1) by
embedding a downward-facing camera in the con-
vex mirror and placing a small, flat mirror imme-
diately below it. Thus, activity below the sensor is
reflected by the convex mirror onto the flat mirror
and then through the camera lenses.

Training a robust classifier
Our method treats a time-weighted image

from multiple cameras as an input vector. The
series of 160 � 120-pixel images obtained from 12
cameras are combined into one composite image
(see Figure 5a). To reduce its dimensionality, we
convert the full color image into a binary image
by subtracting the background image and bina-
rizing. Color values range from 0 to 255, and a
threshold of 30 was used for the binarization.
The initial background image is acquired early
each morning when services are halted and the
station is guaranteed to be empty. Lighting is

The wide viewing field of

omnidirectional cameras is

suitable for observing targets

from various directions.



constant because the station is windowless and
underground, and objects are secured to the walls
and floor at fixed locations. Therefore, it’s rarely
necessary to update the background image, and
a pixel is only updated if, for five minutes, its
value continuously deviates from the initial back-
ground image by �10 and remains within �5 of
its five-minute running average (Bk�1 � �Ik � (1 —
�)Bk, � � 0.005).

Unless specialized hardware is used, most
sophisticated methods of background subtrac-
tion—for example, a mixture of Gaussians, ker-
nel density and means-shift estimators, and eigen
backgrounds—require too much computation to
work in a real-time surveillance system with
many video cameras operating at a high frame
rate, such as 12 to 28 cameras at 30 frames per
second (fps). Faster methods, such as computing
a running average of recent pixel values, can eas-
ily corrupt a background image in a heavily traf-
ficked area like a subway station.

Although the direction of pedestrian flow isn’t
explicitly represented in the binarized images, to
detect it we use the average of a series of past
images, weighted by their recency (see Figure 5).
We considered this method more robust than
computing optical flow, which can be suscepti-
ble to noise.23 The value of pixel i is obtained by
the equation

(1)

in which t is the frame number of the image, and
F is the number of frames in the temporal win-
dow. (The value F was set to 20 in the experi-
ments.) Ii(t) � {0, 1} is the result of background
subtraction and binarization. The method is sim-
ilar to Bobick and Davis’s23 in its results, except
Digital City Surveillance uses background sub-
traction instead of image differencing, and recen-
cy weighting and a temporal window instead of
a decay factor.

Based on a teaching signal, the classifier learns
to recognize human activity in the subway sta-
tion with the composite image. The presence of
each condition wasn’t defined explicitly (for
example, it’s crowded if the head count exceeds
100), but was instead based solely on the opera-
tor’s subjective opinion.

Because various kinds of activity are observed
in a complex environment, the system is
required to produce multiple recognition results

at the same time. Therefore, the support vector
machines run in parallel, each monitoring a spe-
cific type of activity. (Support vector machines
with kernel mapping are introduced in Figure 7
and the “Support Vector Machines” sidebar, next
page.) The system was trained in less than three
hours. Each support vector machine was trained
individually while the operator watched for its
corresponding event in randomly selected video
segments that played at 30 fps. The operator
marked the significant regions by pressing one
button at the beginning of the event and anoth-
er button at its termination.

Attention control based on information gain
Our method of attention control involves

selecting an effective dimension in the input
space. This is equivalent to selecting a pixel from
the composite image. The selection is based on the
information gain from the pixel value and is per-
formed independently for each pixel. Therefore,
the input vector to each support vector machine
is a one-dimensional array corresponding to the
N-pixels with highest information gain (in
descending order) for each SVM’s particular clas-
sification task. In other domains, information gain
has proven to be one of the most effective meth-
ods of ruling out potential features without sacri-
ficing categorization accuracy.24 Entropy is
computed by the equation

(2)

in which y is the attribute as set by the teaching
signal for the class of interest—for example,
whether people are present at the ticket gate—
and p(y) is its probability of occurrence. A is the
total number of attributes. The value p(y) is the
number of occurrences of y divided by the total
number of training data.
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walking down the

stairs”).



The system calculates the entropy H0 when no
pixel values are known. For each pixel i it com-
putes the entropy Hi when the value of pixel i is
known. So, the information gain of pixel i is Hi �

H0. The system selects the pixels with highest
information gain and classifies behavior based on

those selected pixels. This selection process con-
tinues until the system classifies correctly.

Figure 8a shows the relationship between clas-
sification accuracy and the number of pixels used
to detect people walking by the wall. Figure 8b
shows the relationship between classification
accuracy and the number of pixels used to detect
people descending the stairs. Figure 8c shows the
pixels selected by attention control when the sys-
tem recognizes people walking along the wall, and
Figure 8d when the system recognizes that people
are walking down the stairs. This confirms that the
distributed vision system was attending to the area
by the wall or around the stairs.  

System reliability
We assume that the system is applied to sur-

veillance. In a complex environment, it’s some-
times difficult for even a person to recognize
what’s going on. In such an ambiguous situation,
or for borderline states, the system isn’t necessar-
ily required to produce output. For example, if a
region is only moderately crowded, the system
shouldn’t be forced to make either the announce-
ment that it’s crowded or it’s not. In this study,
the system notifies us only when the reliability
value is above 0.7. (We explain how the choice of
this value was determined empirically later.) We
use the distance between unknown data and a
discriminant hyperplane to calculate a value anal-
ogous to the reliability of the judgment (see
Figure 9, page 46). If this reliability value is lower
than the threshold, the system outputs nothing.

Evaluating system accuracy
We conducted several experiments to verify

the performance of the recognition system in a
large subway station. We evaluated the system’s
recognition accuracy in terms of the number of
training samples. The influence of attention con-
trol on accuracy and recognition speed is experi-
mentally determined as is the relationship
between accuracy and the number of pixels
selected by attention control for use by the sup-
port vector machines.

Preparing the system for attention control
In preparation for further experiments, we

examined the relationship between classification
accuracy and the number of pixels selected by
attention control. Each support vector machine
was trained, first using the pixel with highest
information gain, and then the two pixels with
highest information gain, and so on, until we
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The memory-based system must be able to recognize the specific behav-
iors that humans are performing. This is represented as a problem of pat-
tern recognition in which an input vector is classified into two categories.
We use support vector machines to perform the classification problem.1,2

Support vector machines encode the relative positions of data points in a
feature space of higher dimensionality using their dot products, which can
be computed from the data points using a kernel function (see Figure 7 in
the main text).3 Support vector machines combine the nonlinearity of neur-
al networks, the computational efficiency of linear algebra, and the solid
theoretical foundation and statistical rigor of regularization methods. The
advantages of support vector machines over neural networks include a vari-
able-sized hypothesis space, exact optimization (that is, no local minima),
polynomial time convergence (that is, faster training), and no overfitting
by adjusting the margin.

The margin of each input vector xi(i � 1, 2, … N) to a discriminant hyper-
plane wtx � b � 0 is defined as follows:

(A)

A support vector machine determines w and b based on margin maximiza-
tion. To determine w and b uniquely, the following constraint is introduced:

(B)

The formula for margin maximization is derived by applying the
Lagrange multiplier � from Equations A and B:

(C)

(D)

The support vectors and the discriminate hyperplane are computed
from these equations. In this research, we select the Gaussian kernel, and �
is set to 0.5.
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achieved 99 percent accuracy. We used the same
data for both training and testing because our
goal was to evaluate attention control and not
classification performance. In all other experi-
ments, we based performance evaluation on a
data set for testing, which didn’t include any
training data.

Figure 8 shows the results for two different
tasks. The number of pixels required to achieve
99 percent performance is task dependent.
Recognizing people who were descending the
stairs required only 32 pixels, but recognizing
people walking by the wall required 130 pixels.
Other tasks varied between these extremes,
except for the two support vector machines that
detected the general level of crowding in the con-
course area. If too many pixels are used, the accu-
racy declines because of noise from irrelevant
data. This demonstrates attention control’s
power to exclude the irrelevant. We recorded
data from seven to eight o’clock on a weekday
morning to evaluate the accuracy of the recogni-
tion system.

Accuracy of the support vector machines
The composite images were presented to the

system in random order without replacements,
so that the system was evaluated only on novel
images. The number of pixels used by attention
control was determined by the previous experi-
ment. For most tasks, learning converged after
100 to 5,000 training samples, with accuracy
rates ranging from 75 percent to 90 percent on
unseen testing data with 81 percent being the
average. However, for task 3 in Table 1 (“People
are walking from the ticket machines to the
gates”), learning hadn’t converged even after
10,000 training samples, at which point the accu-
racy was only 68 percent, thus bringing average
performance down to just below 80 percent.

The low performance for task 3 might have
something to do with the fact that there are
many ways of walking from the ticket machines
to the gates. In addition, many situations appear
ambiguous even to the operator who must deter-
mine the training signal, illustrating the difficul-
ty of this particular task.

Figure 10 shows the accuracy of recognition
with respect to the number of training samples
for the first three tasks in Table 1:

❚ Task 1. People are walking down the stairs.

❚ Task 2. People are going through the ticket gates.

❚ Task 3. People are walking from the ticket-
vending machines to the gates.

The performance of the system generally improves
as the number of training samples increases.

Attention control increases accuracy and speed
In the next experiment, we inspected the effi-

cacy of attention control. Attention control
increased accuracy for all tasks. The minimum
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Figure 8. (a, b) Classification accuracy improves with the number of pixels

selected by attention control. Pixels are selected based on information gain.

(c) For training data, 130 pixels are required to achieve 99 percent accuracy in

recognizing people walking by the wall but (d) only 32 pixels in recognizing

people going down the stairs.



increase in accuracy was 2 percent for task 3, and
the maximum was 23 percent for task 1. Figure
11 shows the accuracy for the first three tasks
with or without attention control. In this exper-
iment, the number of training samples is only
1,000. The accuracy of recognition with atten-
tion control is higher than without attention
control.

We also compared the average computation
time for training the support vector machines
with 1,000 training samples: the computation
time is 5 seconds with attention control and 961
seconds without it. In the absence of attention
control, 200 times more computation is required,
which isn’t surprising since introducing atten-
tion control significantly reduces the dimen-
sionality of the sensor space. Thus, attention
control based on information gain is effective for
both improving accuracy and decreasing the
computation time.

Reliability metric improves overall
performance

In another experiment, we evaluated the
effect of introducing a reliability metric, which
prohibits the system from producing output
when the reliability value is lower than a thresh-
old. We investigated the recognition accuracy
and the system’s response rate while varying the
threshold from 0 to 1, where 0 corresponds to the
location of the discriminant hyperplane and 1
corresponds to the outer hyperplane.

Figure 12 shows the accuracy of recognition
with respect to the threshold. For most tasks,
accuracy peaks at a reliability value of 0.8. Figure
13 shows the response rate of the system with
respect to the threshold. The response rate for
most conditions declines markedly for a thresh-
old above 0.75. From these results, we can see that
the accuracy rate and the response rate are well
balanced when the threshold is set to about 0.7.

The fact that announcements are suppressed
about 15 percent of the time at this value didn’t
impair the performance of the announcement
system; since announcements are made sequen-
tially, there’s time to obtain more reliable classi-
fications while other announcements are being
made. So, by implementing a reliability metric,
the system’s overall performance could be
increased from between 5 to 83 percent.

Evaluating the announcement system
We would like to briefly mention another

experiment using the JR Kyoto subway station
data that was intended only to evaluate the effec-
tiveness of different methods of applying the
announcement system to practical use. Because
Digital City Surveillance can detect up to nine
events or their absence, it can at any given
moment select among as many as 9 of the 18 pos-
sible announcements Table 1 lists for a total of 512
combinations. How should these announcements
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be ordered when reporting them to the human
operators? To find out, we constructed two
announcement systems. The first simply selects an
event on which to report at random and then
makes the announcement; the second orders the
reporting of events from those that describe glob-
al conditions to more specific statements.

To evaluate the announcement system, we pre-
sented four participants with four video images.
The system generated an announcement for one
of them, either by randomly selecting which event
to report or by following the general-to-specific
ordering. We asked each participant to select
which video corresponds to the sequence of
announcements. If the participant could make a
rapid and accurate selection, we deemed the
announcement to be effective. Figure 14 shows the
precision of the participants’ selections, and Figure
15 shows the reaction time. The precision is almost
the same for both orderings, but the reaction time
is an average of 9 seconds faster for the general-to-
specific ordering. This demonstrates that the order-
ing rules increase the announcements’ usefulness.

Discussion and conclusion
In this article, we proposed a memory-based

classification method for recognizing human
activities in a complex, real-world environment.
This method is flexible because it doesn’t require
sensor calibration, and although it’s trained by a
human operator, the system designer isn’t depen-
dent on prior knowledge about the environment
to be monitored.

Our method can be applied to large-scale sen-
sor networks. As a first step, we attached multi-
ple vision sensors in a large station where people
perform daily activities and confirmed the use-
fulness of the proposed method. As a result,
we’ve shown that the system can recognize
human activities robustly with average success
rates exceeding 80 percent for testing data. The
average computation time for training the sup-
port vector machines with attention control is
only about 0.5 percent of the average computa-
tion time for learning without attention con-
trol—a tremendous efficiency gain.

The ADVISOR system4,25 is most like Digital City
Surveillance in terms of target domain: the visu-
al surveillance of subway stations. However, it’s
difficult to compare the two systems, because
they’re intrinsically different. ADVISOR’S approach
is model-based and purpose-built for specific
recognition tasks. In contrast, we could have
used our system to monitor such nonhuman tar-

gets as animals at a zoo or cars in a parking lot
without redesigning the algorithms.

In addition, the ADVISOR system is designed to
recognize events that occur infrequently but cre-
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ate potential liabilities for the subway station.
That system’s recognition rates were as follows:
fighting, 95 percent; blocking, 78 percent; jump-
ing over the barrier, 88 percent; vandalism, 100
percent; and overcrowding, 80 percent.26 The
average recognition rate was 88 percent. In addi-
tion, false positives occurred less than 1 percent
of the time.

By contrast, the recognition rate of our system
was about 5 percent lower for testing data. False
positives and false negatives were equally prevalent
at about 13 percent for testing data. Obtaining nec-
essary training data to recognize the same events
as the ADVISOR system would be difficult owing to
the rarity of these events at the JR Kyoto subway
station. However, our system can detect and
inform the operator that an unusual event is occur-
ring, even though the event isn’t included in the
training data, based on the distance of an input
vector to an SVM from any prior data.

Note that human factors are responsible for
some of the errors made by our system. Training
conditions such as “it is crowded” weren’t explic-
itly defined—for example, by using an objective
measure such as a head count. They were instead
based solely on the operator’s subjective opinion.
Different operators might not have agreed on
how to classify a given composite image, and the
same operator might have given different classi-
fications at different times. Frequently, ambigu-
ous conditions occur for which there are no clear,
correct answers, and the operator must depend
on intuition. However, if the system can repro-
duce subjective value judgments, that in itself is
of value. MM
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