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Abstract— One of the main aims of humanoid robotics is to
develop robots that are capable of interacting naturally with
people. However, to understand the essence of human interac-
tion, it is crucial to investigate the contribution of behavior and
appearance. Our group’s research explores these relationships
by developing androids that closely resemble human beings in
both aspects. If humanlike appearance causes us to evaluate an
android’s behavior from a human standard, we are more likely
to be cognizant of deviations from human norms. Therefore,
the android’s motions must closely match human performance to
avoid looking strange, including such autonomic responses as the
shoulder movements involved in breathing. This paper proposes
a method to implement motions that look human by mapping
their three-dimensional appearance from a human performer
to the android and then evaluating the verisimilitude of the
visible motions using a motion capture system. This approach
has several advantages over current research, which has focused
on copying a person’s moving joint angles to a robot: (1) in an
android robot with many degrees of freedom and kinematics that
differs from that of a human being, it is difficult to calculate
which joint angles would make the robot’s posture appear
similar to the human performer; and (2) the motion that we
perceive is at the robot’s surface, not necessarily at its joints,
which are often hidden from view.

Index Terms— Learning control systems, motion analysis,
humanlike motion, human-robot imitation, android science,
appearance and behavior problem.

I. INTRODUCTION

Much effort in recent years has focused on the development
of such mechanical-looking humanoid robots as Honda’s
Asimo and Sony’s Qrio with the goal of partnering them with
people in daily situations. Just as an industrial robot’s purpose
determines its appearance, a partner robot’s purpose will also
determine its appearance. Partner robots generally adopt a
roughly humanoid appearance to facilitate communication
with people, because natural interaction is the only task that
requires a humanlike appearance. In other words, humanoid
robots mainly have significance insofar as they can interact
naturally with people. Therefore, it is necessary to discover
the principles underlying natural interaction to establish a
methodology for designing interactive humanoid robots.

Kanda et al. [1] have tackled this problem by evaluat-
ing how the behavior of the humanoid robot “Robovie”

affects human-robot interaction. But Robovie’s machine-like
appearance distorts our interpretation of its behavior because
of the way the complex relationship between appearance
and behavior influences the interaction. Most research on
interactive robots has not evaluated the effect of appear-
ance (for exceptions, see [2] [3]) — and especially not in a
robot that closely resembles a person . Thus, it is not yet
clear whether the most comfortable and effective human-
robot communication would come from a robot that looks
mechanical or human. However, we may infer a humanlike
appearance is important from the fact that human beings have
developed neural centers specialized for the detection and
interpretation of hands and faces [4] [5] [6]. A robot that
closely resembles humans in both looks and behavior may
prove to be the ultimate communication device insofar as it
can interact with humans the most naturally.1 We refer to
such a device as an android to distinguish it from mechanical-
looking humanoid robots. When we investigate the essence of
how we recognize human beings as human, it will become
clearer how to produce natural interaction. Our study tackles
the appearance and behavior problem with the objective of
realizing an android and having it be accepted as a human
being [7].

Ideally, to generate humanlike movement, an android’s
kinematics should be functionally equivalent to the human
musculoskeletal system. Some researchers have developed
a joint system that simulates shoulder movement [8] and a
muscle-tendon system to generate humanlike movement [9].
However, these systems are too bulky to be embedded in
an android without compromising its humanlike appearance.
Given current technology, we embed as many actuators as
possible to provide many degrees of freedom insofar as this
does not interfere with making the android look as human as
possible [7]. Under these constraints, the main issue concerns
how to move the android in a natural way so that its movement
may be perceived as human.

A straightforward way to make a robot’s movement more

1We use the term natural to denote communication that flows without
seeming stilted, forced, bizarre, or inhuman.



humanlike is to imitate human motion. Kashima and Isurugi
[10] extracted essential properties of human arm trajectories
and designed an evaluation function to generate robot arm
trajectories accordingly. Another method is to copy human
motion as measured by a motion capture system to a hu-
manoid robot. Riley et al. [11] and Nakaoka et al. [12]
calculated a performer’s joint trajectories from the measured
positions of markers attached to the body and fed them to
the joints of a humanoid robot. In these studies the authors
assumed the kinematics of the robot to be similar to that of
a human body. However, the more complex the robot’s kine-
matics, the more difficult it is to calculate which joint angles
will make the robot’s posture similar to the performer’s joint
angles as calculated from motion capture data. Therefore,
it is possible the assumption that the two joint systems are
comparable results in visibly different motion in some cases.
This is especially a risk for androids because their humanlike
form makes us more sensitive to deviations from human
ways of moving. Thus, slight differences could strongly
influence whether the android’s movement is perceived as
natural or human. Furthermore, these studies did not evaluate
the naturalness of robot motions.

Hale et al. [13] proposed several evaluation functions
to generate a joint trajectory (e.g., minimization of jerk)
and evaluated the naturalness of generated humanoid robot
movements according to how human subjects rated their
naturalness. In the computer animation domain, researchers
have tackled a motion synthesis with motion capture data
(e.g., [14]). However, we cannot apply their results directly;
we must instead repeat their experiment with an android
because the results from an android testbed could be quite
different from those of a humanoid testbed. For example,
Mori described a phenomenon he termed the “uncanny valley”
[15], [16], which relates to the relationship between how
humanlike a robot appears and a subject’s perception of
familiarity. According to Mori, a robot’s familiarity increases
with its similarity until a certain point is reached at which
slight “nonhuman” imperfections cause the robot to appear
repulsive (Fig. 1). This would be an issue if the similarity
of androids fell into the chasm. (Mori believes mechanical-
looking humanoid robots lie on the left of the first peak.) This
nonmonotonic relationship can distort the evaluation proposed
in existing studies. Therefore, it is necessary to develop a
motion generation method in which the generated “android
motion” is perceived as human.

This paper proposes a method to transfer human motion
measured by a motion capture system to the android by copy-
ing changes in the positions of body surfaces. This method
is called for because the android’s appearance demands
movements that look human, but its kinematics is sufficiently
different that copying joint-angle information would not yield
good results. Comparing the similarity of the android’s visible
movement to that of a human being enables us to develop
more natural movements for the android.

In the following sections, we describe the developed an-
droid and mention the problem of motion transfer and our
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Fig. 1. Uncanny valley

Fig. 2. The developed android “Repliee Q2”

basic idea about the way to solve it. Then we describe the
proposed method in detail and show experimental results from
applying it to the android.

II. THE ANDROID

Fig. 2 shows the developed android called Repliee Q2. The
android resembles an Asian woman because it is modeled
after a Japanese woman. The standing height is about 160
cm. The skin is composed of a kind of silicone that has
a humanlike feel and neutral temperature. The silicone skin
covers the upper torso, neck, head, and forearms with clothing
covering other body parts. Unlike Repliee R1 [17], [7],
silicone skin does not cover the entire body so as to facilitate
flexibility and a maximal range of motion. The soft skin
gives the android a human look and enables natural tactile
interaction. To lend realism to the android’s appearance, we
took a cast of a person to mold the android’s skin. Forty-two
highly sensitive tactile sensors composed of piezo diaphragms

Fig. 3. Examples of motion and facial expressions
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Fig. 4. The android control system

TABLE I
THE DOF CONFIGURATION OF REPLIEE Q2

Degree of freedom
Eyes pan×2 + tilt×1
Face eyebrows×1 + eyelids×1 + cheeks×1

Mouth 7 (including the upper and lower lips)
Neck 3

Shoulder 5×2
Elbow 2×2
Wrist 2×2

Fingers 2×2
Torso 4

are mounted under the android’s skin and clothes throughout
the body, except for the shins, calves, and feet. Since the
output value of each sensor corresponds to its deforming rate,
the sensors can distinguish different kinds of touch ranging
from stroking to hitting.

The android is driven by air actuators that give it 42 degrees
of freedom (DoFs) from the waist up. (The legs and feet are
not powered.) The configuration of the DoFs is shown in
Table I. The android can generate a wide range of motions
and gestures as well as various kinds of micro-motions such as
the shoulder movements typically caused by human breathing.
The DoFs of the shoulders enable them to move up and down
and backwards and forwards. Furthermore, the android can
make some facial expressions and mouth shapes, as shown
in Fig. 3. The compliance of the air actuators makes for a
safer interaction with movements that are generally smoother.
Because the android has servo controllers, it can be controlled
by sending desired joint positions from a host computer.
Parallel link mechanisms adopted in some parts complicate
the kinematics of the android.

III. TRANSFERRING HUMAN MOTION

A. The basic idea

One method to realize humanlike motion in a humanoid
robot is through imitation. Thus, we consider how to map
human motion to the android. Most previous research assumes
the kinematics of the human body is similar to that of the

robot except for the scale. Thus, they aim to reproduce human
motion by reproducing kinematic relations across time and,
in particular, joint angles between links. For example, the
three-dimensional locations of markers attached to the skin
are measured by a motion capture system, the angles of the
body’s joints are calculated from these positions, and these
angles are transferred to the joints of the humanoid robot. It
is assumed that by using a joint angle space (which does not
represent link lengths), morphological differences between the
human subject and the humanoid robot can be ignored.

However, there is potential for error in calculating a joint
angle from motion capture data. The joint positions are
assumed to be the same between a humanoid robot and
the human performer who serves as a model; however,
the kinematics in fact differs. For example, the kinematics
of Repliee Q2’s shoulder differs significantly from those
of human beings. Moreover, as human joints rotate, each
joint’s center of rotation changes, but joint-based approaches
generally assume this is not so. These errors are perhaps more
pronounced in Repliee Q2, because the android has many
degrees of freedom and the shoulder has a more complex
kinematics than existing humanoid robots. These errors are
more problematic for an android than a mechanical-looking
humanoid robot because we expect natural human motion
from something that looks human and are disturbed when
the motion instead looks inhuman.

To create movement that appears human, we focus on
reproducing positional changes at the body’s surface rather
than changes in the joint angles. We then measure the postures
of a person and the android using a motion capture system
and find the control input to the android so that the postures
of person and android become similar to each other.

B. The method to transfer human motion
We use a motion capture system to measure the postures

of a human performer and the android. This system can
measure the three-dimensional positions of markers attached
to the surface of bodies in a global coordinate space. First,
some markers are attached to the android so that all joint
motions can be estimated. The reason for this will become
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Fig. 5. The feedback controller with and without the estimation of the android’s joint angle

clear later. Then the same number of markers are attached
to corresponding positions on the performer’s body. We must
assume the android’s surface morphology is not too different
from the performer’s.

We use a three-layer neural network to construct a mapping
from the performer’s posture to the android’s control input,
which is the desired joint angle. The reason for the network is
that it is difficult to obtain the mapping analytically. To train a
neural network to map from xh to qa would require thousands
of pairs of xh, qa as training data, and the performer would
need to assume the posture of the android for each pair. We
avoid this prohibitively lengthy task in data collection by
adopting feedback error learning (FEL) to train the neural
network. Kawato et al. [18] proposed feedback error learning
as a principle for learning motor control in the brain. This
employs an approximate way of mapping sensory errors to
motor errors that subsequently can be used to train a neural
network (or other method) by supervised learning. Feedback-
error learning neither prescribes the type of neural network
employed in the control system nor the exact layout of the
control circuitry. We use it to estimate the error between the
postures of the performer and the android and feed the error
back to the network.

Fig. 4 shows the block diagram of the control system,
where the network mapping is shown as the feedforward
controller. The weights of the feedforward neural network are
learned by means of a feedback controller. The method has

a two-degrees-of-freedom control architecture. The network
tunes the feedforward controller to be the inverse model
of the plant. Thus, the feedback error signal is employed
as a teaching signal for learning the inverse model. If the
inverse model is learned exactly, the output of the plant tracks
the reference signal by feedforward control. The performer
and android’s marker positions are represented in their local
coordinates xh,xa ∈ R3m; the android’s joint angles qa ∈
Rn can be observed by a motion capture system and a
potentiometer, where m is the number of markers and n is
the number of DoFs of the android.

The feedback controller is required to output the feedback
control input ∆qb so that the error in the marker’s position
∆xd = xa − xh converges to zero (Fig. 5(a)). However, it
is difficult to obtain ∆qb from ∆xd. To overcome this, we
assume the performer has roughly the same kinematics as
the android and obtain the estimated joint angle q̂h simply
by calculating the Euler angles (hereafter the transformation
from marker positions to joint angles is described as T ).2

Converging q̂a to qh does not always produce identical
postures because q̂h is an approximate joint angle that may
include transformation error (Fig. 5(b)). Then we obtain

2There are alternatives to using the Euler angles such as angle decompo-
sition [19], which has the advantage of providing a sequence independent
representation, or least squares, to calculate the helical axis and rotational
angle [20] [21]. This last method provides higher accuracy when many
markers are used but has an increased risk of marker crossover.
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the estimated joint angle of the android q̂a using the same
transformation T and the feedback control input to converge
q̂a to q̂h (Fig. 5(c)). This technique enables xa to approach
xh. The feedback control input approaches zero as learning
progresses, while the neural network constructs the mapping
from xh to the control input qd. We can evaluate the apparent
posture by measuring the android posture.

In this system we could have made another neural network
for the mapping from xa to qa using only the android. As
long as the android’s body surfaces are reasonably close
to the performer’s, we can use the mapping to make the
control input from xh. Ideally, the mapping must learn every
possible posture, but this is quite difficult. Therefore, it is still
necessary for the system to evaluate the error in the apparent
posture.

IV. EXPERIMENT TO TRANSFER HUMAN MOTION

A. Experimental setting

To verify the proposed method, we conducted an experi-
ment to transfer human motion to the android Repliee Q2.
We used 21 of the android’s 42 DoFs by excluding the 13
DoFs of the face, the 4 of the wrists, and the 4 of the
fingers (n = 21). We used a Hawk Digital System,3 which
can track more than 50 markers in real-time. The system is
highly accurate with a measurement error of less than 1 mm.
Twenty markers were attached to the performer and another
20 to the android as shown in Fig. 6 (m = 20). Because
the android’s waist is fixed, the markers on the waist set
the frame of reference for an android-centered coordinate
space. To facilitate learning, we introduce a representation
of the marker position xh,xa as shown in Fig. 7. The effect

3Motion Analysis Corporation, Santa Rosa, California.
http://www.motionanalysis.com/
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of waist motions are removed with respect to the markers
on the head. To avoid accumulating the position errors at
the end of the arms, vectors connecting neighboring pairs of
markers represent the positions of the markers on the arms.
We used arc tangents for the transformation T , in which the
joint angle is an angle between two neighboring links where
a link consists of a straight line between two markers.

The feedback controller outputs ∆qb = K∆q̂d, where the
gain K consists of a diagonal matrix. There are 60 nodes
in the input layer (20 markers × x, y, z), 300 in the hidden
layer, and 21 in the output layer (for the 21 DoFs). Using 300
units in the hidden layer provided a good balance between
computational efficiency and accuracy. Using significantly
fewer units resulted in too much error, while using signifi-
cantly more units provided only marginally higher accuracy
but at the cost of slower convergence. The error signal to the
network is t = α∆qb, where the gain α is a small number.
The sampling time for capturing the marker positions and
controlling the android is 60 ms. Another neural network
which has the same structure previously learned the mapping
from xa to qa to set the initial values of the weights. We
obtained 50,000 samples of training data (xa and qa) by
moving the android randomly. The learned network is used
to set the initial weights of the feedforward network.

B. Experimental results and analysis

1) Surface similarity between the android and performer:
The proposed method assumes a surface similarity between
the android and the performer. However, the male performer
whom the android imitates in the experiments was 15 cm
taller than the women after whom the android was modeled.
To check the similarity, we measured the average distance
between corresponding pairs of markers when the android
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and performer make each of the given postures; the value
was 31 mm (see the Fig. 6). The gap is small compared to
the size of their bodies, but it is not small enough.

2) The learning of the feedforward network: To show the
effect of the feedforward controller, we plot the feedback
control input averaged among the joints while learning from
the initial weights in Fig. 8. The abscissa denotes the time
step (the sampling time is 60 ms.) Although the value of
the ordinate does not have a direct physical interpretation,
it corresponds to a particular joint angle. The performer
exhibited various fixed postures. When the performer started
to make the posture at step 0, error increased rapidly because
network learning had not yet converged. The control input
decreases as learning progresses. This shows that the feed-
forward controller learned so that the feedback control input
converges to zero.

Fig. 9 shows the average position error of a pair of
corresponding markers. The performer also gave an arbitrary
fixed posture. The position errors and the feedback control
input both decreased as the learning of the feedforward
network converged. The result shows the feedforward network
learned the mapping from the performer’s posture to the
android control input, which allows the android to adopt
the same posture. The android’s posture could not match
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the performer’s posture when the weights of the feedforward
network were left at their initial values. This is because the
initial network was not given every possible posture in the
pre-learning phase. The result shows the effectiveness of the
method to evaluate the apparent posture.

3) Performance of the system at following fast movements:
To investigate the performance of the system, we obtained
a step response using the feedforward network after it had
learned enough. The performer put his right hand on his knee
and quickly raised the hand right above his head. Fig. 10
shows the height of the fingers of the performer and android.
The performer started to move at step 5 and reached the final
position at step 9, approximately 0.24 seconds later. In this
case the delay is 26 steps or 1.56 seconds. The arm moved
at roughly the maximum speed permitted by the hardware.
The android arm cannot quite reach the performer’s position
because the performer’s position was outside of the android’s
range of motion. Clearly, the speed of the performer’s move-
ment exceeds the android’s capabilities. This experiment is
an extreme case. For less extreme gestures, the delay will be
much less. For example, for the sequence in Fig. 11, the delay
was on average seven steps or 0.42 seconds.

4) The generated android motion: Fig. 11 shows the per-
former’s postures during a movement and the corresponding
postures of the android. The value denotes the time step.
The android followed the performer’s movement with some
delay (the maximum is 15 steps, that is, 0.9 seconds). The
trajectories of the positions of the android’s markers are
considered to be similar to those of the performer, but errors
still remain, and they cannot be ignored. While we can
recognize that the android is making the same gesture as the
performer, the quality of the movement is not the same. There
are a couple of major causes of this:

• The kinematics of the android is too complicated to
represent with an ordinary neural network. To avoid this
limitation, it is possible to introduce the constraint of the
body’s branching in the network connections. Another
idea is to introduce a hierarchical representation of the
mapping. A human motion can be decomposed into a
dominant motion that is at least partly driven consciously
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and secondary motions that are mainly nonconscious
(e.g., contingent movements to maintain balance, such
autonomic responses as breathing). We are trying to
construct a hierarchical representation of motion not only
to reduce the computational complexity of learning but
to make the movement appear more natural.

• The method deals with a motion as a sequence of
postures; it does not precisely reproduce higher order
properties of motion such as velocity and acceleration
because varying delays can occur between the per-
former’s movement and the android’s imitation of it. If
the performer moves very quickly, the apparent motion
of the android differs. Moreover, a lack of higher order

properties prevents the system from adequately compen-
sating for the dynamic characteristics of the android and
the delay of the feedforward network.

• The proposed method is limited by the speed of motion.
It is necessary to consider the properties to overcome the
restriction, although the android has absolute physical
limitations such as a fixed compliance and a maximum
speed that is less than that of a typical human being.

Although physical limitations cannot be overcome by any
control method, there are ways of finessing them to ensure
movements still look natural. For example, although the
android lacks the opponent musculature of human beings,
which affords a variable compliance of the joints, the wobbly
appearance of such movements as rapid waving, which are
high in both speed and frequency, can be overcome by
slowing the movement and removing repeated closed curves
in the joint angle space to eliminate lag caused by the slowed
movement. If the goal is humanlike movement, one approach
may be to query a database of movements that are known to
be humanlike to find the one most similar to the movement
made by the performer, although this begs the question of
where those movements came from in the first place. Another
method is to establish criteria for evaluating the naturalness
of a movement [10]. This is an area for future study.

C. Required improvement and future work

In this paper we focus on reproducing positional changes
at the body’s surface rather than changes in the joint angles
to generate the android’s movement. Fig. 5(a) is a straightfor-
ward method to implement the idea. This paper has adopted
the transformation T from marker positions to estimated joint
angles because it is difficult to derive a feedback controller
which produces the control input ∆qb only from the error in
the marker’s positional error ∆xd analytically. We actually
do not know which joints should be moved to remove a
positional error at the body’s surface. This relation must
be learned, however, the transformation T could disturb the
learing. Hence, it is not generally guaranteed that the feedback
controller which converges the estimated joint angle q̂a to
q̂h enables the marker’s position xa to approach xh. The
assumption that the android’s body surfaces are reasonably
close to the performer’s could avoid this problem, but the
feedback controller shown in Fig. 5(a) is essentially necessary
for mapping the apparent motion. It is possible to find out
how the joint changes relate to the movements of body
surfaces by analyzing the weights of the neural network of
the feedforward controller. A feedback controller could be
designed to output the control input based on the error in the
marker’s position with the analyzed relation. Concerning the
design of the feedback controller, Oyama et al. [22], [23], [24]
proposed several methods for learning both of feedback and
feedforward controllers using neural networks. This is one
potential method to obtain the feedback controller shown in
Fig. 5(a). Assessment of and compensation for deformation
and displacement of the human skin, which cause marker



movement with respect to the underlying bone [25], are also
useful in designing the feedback controller.

We have not dealt with the android’s gaze and facial
expressions in the experiment; however, if gaze and facial
expressions are unrelated to hand gestures and body move-
ments, the appearance is often unnatural, as we have found in
our experiments. Therefore, to make the android’s movement
appear more natural, we have to consider a method to imple-
ment the android’s eye movements and facial expressions.

V. CONCLUSION

This paper has proposed a method of implementing human-
like motions by mapping their three-dimensional appearance
to the android using a motion capture system. By measuring
the android’s posture and comparing it to the posture of a
human performer, we propose a new method to evaluate mo-
tion sequences along bodily surfaces. Unlike other approaches
that focus on reducing joint angle errors, we consider how to
evaluate differences in the android’s apparent motion, that is,
motion at its visible surfaces. The experimental results show
the effectiveness of the evaluation: the method can transfer
human motion. However, the method is restricted by the speed
of the motion. We have to introduce a method to deal with
the dynamic characteristics and physical limitations of the
android. We also have to evaluate the method with different
performers. We would expect to generate the most natural and
accurate movements using a female performer who is about
the same height as the original woman on which the android
is based. Moreover, we have to evaluate the human likeness of
the visible motions by the subjective impressions the android
gives experimental subjects and the responses it elicits, such
as eye contact [26], [27], autonomic responses, and so on.
Research in these areas is in progress.
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