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Abstract

The human nervous system is equipped with a forward kinematics model, which calculates
the hand positions using proprioceptive information. Since signi2cant evidence suggests that the
forward dynamics model is used for general motion control, the forward kinematics model also
seems to be used for the control of visually guided reaching. However, we believe that the
forward kinematics model plays no role, or only a supplemental role, in the 2nal stages of
visually guided hand position control. Instead, we propose that this is mainly handled by the
inverse kinematics model. To explain the relatively large errors of the internal models in the
human nervous system, Maeda et al. (Proceedings of the 1993 International Joint Conference
on Neural Networks (IJCNN’93 Nagoya), 1993, pp. 1317–1320) proposed a neural network
architecture called independent scalar learning elements summations (ISLES) model. We will
provide evidence based on experimental results and a mathematical analysis using the ISLES
model to support our hypothesis. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

An important subject matter in neuroscience is the internal model involved in human
motion control [3]. Ito proposed that the cerebellum provides forward models for a
variety of controlled systems [3]. Much evidence supports the assumption that the
forward dynamics model is used for motion control.

A person can estimate the position of the hands with a certain precision even when
they are out of sight. It is known that the human nervous system is equipped with
a forward kinematics model of the arm that calculates the hand position using pro-
prioceptive information. Without visual feedback, a monkey loses its hand position
when area 2ve of its parietal lobe is cooled [11]. The neuronal activities of the pari-
etal cortex corresponding to the forward kinematics model were discovered [2]. It is
often supposed that the forward kinematics model that calculates the hand position
using proprioceptive information operates in the posterior parietal cortex. Hereafter,
we call this forward kinematics model FKMP (Forward Kinematics Model which uses
Proprioceptive information). It is possible that the other forward kinematics model
uses motor commands to estimate the hand position. Hereafter, we call this forward
kinematics model FKMM (Forward Kinematics Model which uses Motor commands).

Since there is signi2cant evidence supporting the use of the forward dynamics model
in hand position control, it seems plausible that the forward kinematic models are also
used for visually guided reaching. However, we present evidence that supports precisely
the opposite conclusion:

(1) The FKMP plays no role, or only a supplemental role, in the 2nal stages of
visually guided reaching. The human nervous system cannot freely use the forward
kinematics model.

(2) The properties of the FKMP are diEerent from those of the FKMP, if the FKMM
plays a main role in the stages.

(3) It is highly probable that the inverse kinematics model plays the main role.

We will provide experimental evidence and theoretical predictions based on our math-
ematical model of sensorimotor integration to support these claims.

2. Background

2.1. Human forward and inverse kinematics models

This section presents models of the human inverse kinematics solver. Let �∈Rm

be the joint angle vector and x∈Rn be the hand position=orientation vector given
by the visual system. The relationship between x and � is expressed as x = f (�),
where f is a C1 class function. The Jacobian of the hand position vector is expressed
as J(�)=@f (�)=@�: Let xd be the desired hand position=orientation vector and e=xd −
x=xd−f (�) be the hand position error vector. We consider the inverse kinematics prob-
lem that involves calculating the joint angle vector � satisfying xd=f (�) from a desired
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hand position vector xd. In this paper, a function f −1(x) that satis2es x = f ( f −1(x))
is called an inverse kinematics function of f (�). The acquired model of f −1(x) in
the nervous system is called an inverse kinematics model. Hereafter, we call the in-
verse kinematics model IKM. Let �im(x)∈Rm be the output of the inverse kinematics
model. Let �fm(�)∈Rn be the output of the forward kinematics model, which ap-
proximates f (�).

A human can conduct a visually guided reaching motion at a certain precision even
without using the visual feedback of the hand position [10]. There are two ways to solve
the inverse kinematics problem without hand position error feedback. The straightfor-
ward method is through the use of the IKM. If the IKM �im(xd) is suJciently precise,
then an inverse kinematics solution �im is calculated as �im = �im(xd). The other ap-
proach is via the use of the forward kinematics model. A number of researchers have
proposed and used the method that exploits the forward model of the controlled system
and have solved the control problem by using the iterative improvement technique. The
methods obtain an approximate solution for the inverse problems described as xd=f (�)
by solving the following nonlinear equation:

xd = �fm(�): (1)

By using the multiple starts of the iterative procedure, Eq. (1) can usually be solved.
For example, Newton’s method can be used for solving Eq. (1). Let �(k) be the esti-
mated joint angle vector at step k and J+(�) be the pseudo-inverse matrix
(Moore–Penrose’s generalized inverse matrix) of J(�), which is calculated as
J+(�) = JT(�)(J(�)JT(�))−1. By using the following iterative computation, a solu-
tion that satis2es Eq. (1) can be obtained

�(k + 1) = �(k) + J+(�(k))(xd − �fm(�(k))): (2)

2.2. Independent scalar learning elements summations (ISLES) model

To explain the relatively large errors of the internal models, Maeda et al. proposed a
neural network architecture called the independent scalar learning elements summations
(ISLES) model [7]. Let q = (q1; q2; : : : ; qu)T ∈Ru be the input vector and �(q)∈Rv

be the output of the ISLES model. The ISLES model consists of a number of scalar
learning elements �s{ij}(qj) (i = 1; 2; : : : ; v; j = 1; 2; : : : ; u). Each element receives one
scalar signal and calculates one scalar output. The ith component of the output �i(q)
is calculated as follows:

�i(q) =
u∑

j=1

�s{ij}(qj): (3)

The element can precisely reproduce any C1 class function with scalar input. However,
the ISLES model cannot precisely reproduce all C1 class functions whose input is a
vector. This limitation can explain many psychophysical properties of human beings
such as Helmholtz’s horopter [1], the distortion of vision space [5], the haptic horoptor,
and auditory alleys [9].
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Let �′(q) be the desired output signal for �i(q) and p(q) be the probability density
function of q. Let Q be all the input space q and Qj be the region, where z = qj is
satis2ed. The learning results of the ISLES model can be described as follows:

�s{ij}(z) = E[�′
i(q)|z = qj] =

∫
Qj
p(q)�′

i(q) dq
∫
Qj
p(q) dq

: (4)

3. Psychophysical evidence: hand position control without visual feedback does not
rely mainly on the FKMP

A number of the human nervous system’s internal models have relatively large errors
[6–8]. By using these errors, we can investigate the use of the internal models and
the con2guration of the control system. Based on JLacksch’s classical psychophysical
experiment [4], Maeda et al. conducted psychophysical experiments to clarify the prop-
erties of the forward kinematics model that handles somatosensory information [6,7].
The experimental setup involved a subject in a darkroom who could not see his or her
hand and could move a spotlight by using a joystick as shown in Fig. 1. First, the
subject was asked to move the right hand to a given position. Then, the subject was
asked to move the spotlight to the right-hand position as estimated by using proprio-
ceptive information. This was achieved by controlling the joystick with the left hand
without the visual feedback of the right-hand position. The spotlight position 2nally
corresponded to the output of the forward kinematics model. Subjects usually 2nish
one task in 15 s. It was found that a human points to a position nearer his=her body
than the true hand position, as in JLacksch’s experiment, as shown in Fig. 1(b). A white
square box indicates the true hand position and a black square indicates the hand po-
sition estimated from somatosensory information. An arrow indicates an error vector
of FKMP.

Prablanc, Pelisson and their group conducted a number of experiments to clarify
the properties of visually guided reaching with and without the use of hand position
error feedback [10]. These experiments showed that a human reaches toward a point
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Fig. 1. Properties of FKMP: (a) experimental setup; and (b) experimental results.
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Fig. 2. Properties of reaching error without visual feedback: (a) experimental setup; and (b) experimental
results.

nearer to his or her body than the target position without the hand position error
feedback. Maeda improved those experiments and showed that the reaching error is
expanded by the constraints imposed on the subjects as shown in Fig. 2(a) [6,7].
A subject could measure the target position only by using the rotation angles of the
eyes. Fig. 2(b) shows the experimental error of visually guided reaching without hand
position error feedback. A white square box indicates the target position, and a black
square box indicates the real hand position as the result of reaching.

If FKMP is used for hand position control, then the real hand position should be
farther from the subjects’ body than the target position. However, the direction of
the real error contradicts the direction of the predicted error of the inverse kinematics
solution, as calculated by using the FKMP. We can conclude that the FKMP is not at
all, or is only partially used in the 2nal stage of the reaching motion without visual
feedback. Furthermore, we can conclude that the properties of the FKMM are diEerent
from those of the FKMP if the FKMM plays a main role in the stages.

4. Mathematical analysis based on ISLES model

There are two possible mechanisms for hand position control without using visual
feedback of hand position error:

(i) The IKM plays a main role.
(ii) The FKMM plays a main role.

Although both these cases are possible, we suggest that the 2rst case is more probable
because the ISLES model supports the 2rst case, as shown in this section.

4.1. Forward kinematics learning by ISLES model

First, we calculated the output of FKMS, which consisted of an ISLES model. In
these simulations, the visual information was described by using the bipolar latitude �
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(a) Top View (b) Sidep View

Fig. 3. Visual and motor coordinates: (a) top view; and (b) side view.

and the vergence angle � of the eyes. Fig. 3 shows the visual coordinates x = (�; �)T

and the joint angle vector coordinates �= (�; �)T. The range of � was (−100◦;−95◦).
The range of � was (−50◦;−10◦). The range of � was (−100◦;−95◦). The range of
� was (−50◦;−10◦).

We calculated the output of the FKMP �fm(�) which consists of an ISLES model
using Eq. (4). The corresponding hand position on the visual coordinates x = (�; �)T

was used as the desired output signal for the FKMP as �′
fm(�)= x. Let pfm(�) be the

probability density function of �. We assumed that the value of pfm(�) was constant in
the region where �; �; �, and � are within the de2ned range and pfm(�) was 0 in the
other region. Fig. 4 shows the simulated properties of the FKMP. If we use multi-layer
neural networks, then there is no signi2cant error of the FKMP. The ISLES model can
explain the properties of the FKMP.

4.2. Inverse kinematics learning by ISLES model

We calculated the output of the IKM �im(x) which consists of an ISLES model
using Eq. (4). �′

im(x) is calculated by solving f −1(x) analytically. Let pim(x) be the
probability density function of x. We assumed that the value of pim(x) was constant
in the region where �; �; �, and � are within the de2ned range and pim(x) was 0 in
the other region.

Fig. 5 shows the simulated reaching error by using the IKM, which consists of the
ISLES model. An arrow indicates a simulated reaching error vector. The IKM, which
consists of the ISLES model, can explain the properties of the errors of visually guided
reaching without hand position error feedback. If the ISLES model is an appropriate
model of human sensorimotor integration, then the inverse kinematics model plays the
main role.
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5. Conclusions

In this paper, we presented experimental evidence suggesting that the forward kine-
matics model that calculates hand positions from proprioceptive information plays at
best a supplemental role in the 2nal stages of reaching without visual feedback. We also
presented a theoretical argument to support the conclusion that the inverse kinematics
model plays the main role.
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