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Abstract— Inverse kinematics computation using an artificial ~ function of a typical robot arm with joint limits is a multi-
neural network that learns the inverse kinematics of a robotarm  valued, discontinuous function. Although given enough hid-

has been employed by many researchers. However, the inverse e ynits multi-layer neural networks are in theory universal
kinematics system of typical robot arms with joint limits is a

multi-valued and discontinuous function. Since it is difficult for approxmators, .'t IS Cl_"ff'cu't to tra'n thgm to approximate

a well-known multi-layer neural network to approximate this these kinds of discontinuous functions with currently popular
kind of function, a correct inverse kinematics model cannot be  algorithms.

obtained by using a single neural network. To overcome the Jacobs et al. [5][6] proposed a modular neural network

difficulties of inverse kinematics learning, we proposed a novel architecture that has been used by many researchers. How
modular neural network system that consists of a humber of

experts, with each expert approximating a continuous part of ever, _the typ|cal_ Input-output maF?p'”g Of_the'r n.etworks IS

the inverse kinematics function. The proposed System selects dESCI’Ibed as a S|ng|e'Va|ued funCtlon. Thell’ Iearn|ng methOdS
one appropriate expert whose output minimizes the expected would not be suitable for the inverse kinematics learning of
position/orientation error of the end-effector of the arm. The a general robotic arm.

system can learn a precise inverse kinematics model of a robotic The inverse kinematics function can be decomposed into
arm with equal or more degrees of freedom than that of its end-

effector. However, there are robotic arms with fewer degrees of a finite number of mvers.e kmem_atlcs S,OIUt'On .branches.
freedom. The system cannot learn a precise inverse kinematics DeMers et al. proposed an inverse kinematics learning method
model of this kind of arm. To overcome this, we adopted a in which a neural network learns each solution branch [7][8].
modified Gauss-Newton method for finding the least-squares However, the method is purely off-line and is not applicable

solution. Through the modifications presented in this paper, the ¢4, on_jine learning, that is, the simultaneous or alternate ex-
improved modular neural network system can obtain a precise

inverse kinematics model of a general robotic arm. ecution of robot control and inverse model learning. Further-

Index Terms— Learning control systems, Manipulator kine- more, the method is not goal-directed. There is no direct way

matics, Neural networks, Gauss-Newton method to train the learner to output a joint angle vector corresponding
to a given desired end-effector position/orientation.

l. INTRODUCTION We proposed a novel modular neural network architecture

People who work efficiently in complex, unstructured for inverse kinematics learning based on DeMers’ method [9]
environments acquire their skills through various kinds of[10]. The proposed modular neural network system consists
learning. It may be necessary to implement similar abilitiesof a number of experts, implemented using artificial neural
in robots to enable them to work in the same kinds ofnetworks. Each expert approximates a continuous region of
environments [1][2]. the inverse kinematics function. The proposed modular neural

The task of calculating all of the joint angles that would network system selects one expert whose output minimizes
result in a specific position/orientation of an end-effector of athe expected position/orientation error of the end-effector of
robot arm is called the inverse kinematics problem. An inversehe arm. The proposed system can learn a precise inverse
kinematics solver using an artificial neural network that learnkinematics model of a robotic arm with equal or more degrees
the inverse kinematics system of a robot arm has been usexl freedom than that of its end-effector.
in much research [3][4]; however, many researchers did not However, there are robotic arms with fewer degrees of
pay enough attention to the fact that the inverse kinematickeedom. The system is not applicable to these robotic arms,



because it uses Resolved Motion Rate Control (RMRC) [11] Let ®;,,(x) be the output of the inverse kinematics model.
to find the inverse kinematics solutions and RMRC is onlyAlthough g(x) is usually a multi-valued and discontinu-
applicable for a robotic arm with equal or greater degrees obus function, the inverse kinematics function can be con-
freedom than that of its end-effector. structed by the appropriate synthesis of continuous functions
To obtain a precise inverse kinematics model of a robo{8][9][10].
with fewer degrees of freedom, some modifications are nec- ) , , , )
essary. We modified the Gauss-Newton method for finding thé- Configuration of the proposed inverse kinematics solver
joint angle vector trajectory from the initial posture of the arm Fig. 1 shows the configuration of the improved inverse
to the given desired end-effector position/orientation. By thekinematics solver with the modular architecture networks for
modifications proposed in this paper, the improved modulainverse kinematics learning. Each expert network in Fig. 1
neural network system can obtain a precise inverse kinemati@pproximates a continuous region of the inverse kinematics
model of a general robotic arm. Numerical experiments offunction. The forward models in Fig. 1 approximate the
the inverse kinematics learning were performed in order tdorward kinematics function of the robot arm. They have
evaluate the performance of the improved system. the same input-output relationship. The performance index of
each expert is the predicted end-effector position/orientation
error calculated by using the forward model. The expert

Expert Selector with Forward Model . .
selector chooses one appropriate expert by using the expecte

Predicted Error ¢ [Squareor
“Eepert — j LM performances of the experts. _ .

o o . o The extended feedback controller consists of the reaching
& T B e @ (x,) trajectory generator, the end-effector position/orientation error
t ] feedback controller, and the random posture generator as
Fer — I Ql» shown in Fig. 1. The extended feedback controller calculates

> Netp Mo h ‘ inverse kinematics solutions by a kind of iterative improve-
R T =) o (xy) ment method as described in Section 1I-C. When no precise
o e [ solution is obtained by using the output of the selected expert

Expert forer ) & LM as the initial value of the calculation, the controller performs
oy Neto || Modd = . a global search, which is also described in Section II-C. The
KE ‘ 2T @y © ) proposed modular network system generates a new exper
ot S R - when no expert can generate an initial value that finally

reaches an inverse kinematics solution for a given desired
end-effector position/orientation.
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x| Traiectory 200 51 Controller ¥ . . :
“ [ Generator | Each expert has its representative posture. 0_@( be
x"(0) E%: :,’R, o oo the representative posture of théh expert andz.’ be the
— end-effector position/orientation that correspond#d. Let

””””” Extendod Feedback Contralier 3" (z) be the output of thé-th expert when the input of
the expert isc. Each expert is trained to satisfy the following
Fig. 1. Inverse kinematics solver with modular neural net system equation:

2 ~ f(@) (21)). (1)
[I. MODULAR NEURAL NETWORK SYSTEM

We next review the original modular net system for inverse _1he above condition can be easily satisfied by Cf)apgmg the
kinematics learning before presenting its modifications. ~ Pias parameters of the output layer of the expert.flzgéi% (z)

Let 8 be them x 1 joint angle vector ane: be then x 1 be the desired output for thieth expert. To maintain the
position/orientation vector of a robot arm. The relationship2P0ve condition, the expert is periodically trained by setting
between® and = is described byz = f(0). f is a the desired output as follows:

C! class function. LetJ(8) be the Jacobian of the robot q){(i)(w(i)) _ W) )
arm, defined as7(0) = Jf(0)/06. When a desired end- e r

effector position/orientation vectae, is given, an inverse Each expert approximates a continuous region of the inverse
kinematics computation that calculates the joint angle vectokinematics function in which the reaching motion can move
6, satisfying the equation:; = f(0,) is considered. In this the end-effector smoothly from its representative posture.
paper, a functiory(x) that satisfiest = f(g(x)) is called The proposed modular net system uses the predicted posi-
an inverse kinematics function ¢f(@). The acquired model tion/orientation error as the performance index of the expert.
of the inverse kinematics systegfx) in the robot controller The expert selector chooses the expert with the minimum
is called an inverse kinematics model. predicted error. Let®;,,(0) be the output of the forward



kinematics model. The predicted error of théh expertp; is  The desired trajectory of the end-effector position/orientation

calculated as follows: is on a straight line which connects, to x;. The previous
= _ &, FX0 . 3 reachl_ng motl_on is cpnducted as the tracking control to the
pi = [lza fm(Bin ()l ®) following desired trajectory of the end-effectay;(k)(k =
C. Extended feedback controller 0,1,...,T + 1) described as follows:

Conventional on-line inverse model learning methods, such LetT be an integer that satisfids-1 < ||zg — z;|| /75 <
as forward and inverse modeling proposed by Jordan [4]', wherer,, represents step size. The desired trajecion)
and feedback error learning proposed by Kawato [12], arés a straight line fromx, = f(8(0)) to =, which is calculated
based on the local information of the forward system neaas follows:
the output of the inverse model. The desired output signal _k k
provided by these methods is not always in the direction that zq(k) = { (ml 7)%s EZ i Ir}; T 4)
finally reaches the correct solution of the inverse problem. ¢ -7
An extended feedback controller avoids that drawback by/NVhen the orientation is represented by the direction cosine
employing a global search technique based on the multiplgatrix or the quaternion, the componentsagf(k) must be
starts of the iterative method. normalized.

When a desired end-effector position/orientatieq is Let J*(6) be the pseudo-inverse matrix (Moore-Penrose
given, the expert selector chooses the expert with the mingeneralized inverse matrix) af (6), which is calculated as
imum predicted error among all the experts. When the pre- o 4T T 1
dicted error of the selected expert is lower than an appropriate J7(6) = T (O)(J(6)T7(9))"" ©)
thresholdr.;,,,, the extended feedback controller conducts aJ* (@) is used as the coordinate transformation gain of the
reaching motion from the posture corresponding to the outpubdutput error feedback.
of the expert tox, by using a newly developed iterative  Let (k) be an approximate inverse kinematics solution at
improvement technique, as described in Section Ill. Wherstepk and A@(k) be the change of (k). The trajectory of
the predicted error of the selected expert is larger than athe joint angle vectof(k) is calculated as follows:
appropriate threshold,;,,, the extended feedback controller
conducts a reaching motion from the representative posture O(k +1) = 6(k) + A6 (k) (6)
of the selected expert. AG(k) = JT(O(k))(a(k +1) — £(O(K)). (7)

When the controller cannot find a precise solution becaUSS\/hen is smaller than or equal ta. andr—. is small enouah
of the singularity of the Jacobian or the joint limits, the & q Tst 9

reaching motion is regarded as a failure and the reachingjrkthelnocné:qmse:trgy OtLg]?ofI?OnN%rd lgmeant".ng::.cs functigiie),
motions from the following three kinds of initial postures are (k+1) isty wing equation.

conducted until a precise solu_tion is obtained. xq(k+ 1)~ f(O(k+1)). (8)
(1) The posture corresponding to the output of the other ) ) _ )
expert with the predicted error smaller than,, If a precise solutionf(k), from which end-effector posi-
(2) The representative postures of the randomly selectefion/orientation error normjzq(k) — f(6(k))|| is lower than
experts an appropriate thresholed,, is obtained, the solution is used
(3) Randomly generated postures for training the selected expert as follows:
When a precise solution is obtained from a randomly gen- égﬁ)(md(kz)) = 0(k). (9)

erated posture, a new expert is generated and the solution is
used as the representative posiiyef the expert. If a precise B. Updated reaching motion

solution is obtained in the above steps, the solution is used j+(g) defined in Equation (5) cannot be calculated when
as the desired output signal for the expert. n is greater thanm. Usually, an arm with fewer degrees
1. UPDATED REACHING MOTION CONTROL of freedom cannot rea!lze a given deswed_ trajectory pf the
_ _ end-effector position/orientation. The reaching motion is not

A. Reaching mot.|on for equal or more degrees of freedom achieved by tracking a straight line from, = £(6(0)) to
~ Before presenting the updated method, the previous methogl, as in Section IlI-A. A slight but important modification
is presented. o . _ of the reaching motion is necessary.

Let 6(0) be the initial posture of the iterative method, |et j*(9) be the generalized inverse matrix for finding a

which is the output of the selected exp@t’(x,); the repre-  east-squares solution, which is calculated as follows:
sentative posture of the selected exp&éﬁ; or the randomly

generated posture. The extended feedback controller conducts J*(6) = (JT(6)J(8)) T (6). (10)

a reaching motion from, = f(6(0)) to zq. The real calculation is conducted by using Singular Value

We assume that a precise end-effector position/orientatioEl)eCOrnposition (SVD) otf (9). By using.J*(8), the update

feedback controller is already obtained by numerical d|1°feren-vector of the Gauss-Newton method is calculated as follows:

tiation techniques or by learning [13]. We used a resolved mo-
tion rate control (RMRC) [11] to realize the reaching motion. AOg (k) =T (0(k))(0(k))(xq— f(O(K))). (11)



The aboveA#6 (k) is sometimes too large for controlling Bp Yoo
the robotic arm. Let,; be the step size parameter to keep an - 3

||A8(k)|| small enoughA#(k) is calculated as follows: X }»Z 2 Y
& M, o Xy
200 - e’ 00,
Abc(k) ([[A8¢ (k)| < rost) (12) y — ey v,
Tag o Adak)  ([[A8a(k)|| = rost)
6(k) is a unique inverse kinematics solution fofk) =
f(6(k)) in most cases. Instead of Equation (9), the learning Fig. 2. Configuration of Power 2 Robotic Arm
of the selected expert learning is conducted as follows:
1(4) _
@y, (2(F)) = 0(k). (13) In the simulations, joint angle vectors were generated by

Let rgmin be an appropriate positive number defining theUSing & uniform random number generator, and the end-
minimum size of A@(k). The reaching motion is regarded effector positions that correspond to the generated vectors

as successfully finished when the following inequalities areVeré used as the desired end-effector positions/orientation
established: xy4. To evaluate the performance of the proposed neural net

system, 3,200,000 desired end-effector positions/orientations

l[zg — f£(O(K))|| < e (14)  were generated for the estimation of the root mean square

I|AO(K)|| < Tomin (15) (RMS) error of the end-effector position and orientation,,
was set ab.33 m, r. was set ab.002 m andr, was set at
0.05 rad.

The parameters concerning CLLU are defined in Appendix

The modular neural network systems selected the expeR and set as followsP, was set atl0*. Q and R were set at
with minimum error by using the complete forward kinemat- 0.1 and0.01, respectivelyr.y was set af.0001. 7.y was set
ics model f(6). We performed simulations of learning the at 1. was set at 2r,,;, was set atl /2%, By changing the
inverse kinematics model of a five degree-of-freedom (DoFhbove parameters, especially, 7., and 7.4, the precision
arm, and for simplicity tested the modular neural networkof the learned inverse kinematics model and the memory
systems in these simulations. consumption can be changed.

A 4-layered neural network was used for MLN. The first
layer (input layer) and the fourth layer (output layer) of the

Such learning algorithms as the backpropagation of errogyperts consisted of linear neurons. The second and the thirc
that are typically applied to multi-layer neural networks are|ayers each consisted of 30 nonlinear neurons. The back-
not fast. To accelerate the learning speed, we adopted a HOV&P(/)pagation method was used for training. The learning rate

learner as the expert of the proposed modular network systefgy the experts was set at005. The momentum parameter
and a novel learning method based on the Kalman filter [14]yas set ap.5.

The learner is an ensemble of linear neural networks. We call Tep sets of 1,000,000 learning trials for the inverse kine-

the Iear_nercollet_:tion _of linear I_earning unitCLLU). The  matics learning by MLN and CLLU were conducted. Fig. 3(a)
learner is described in Appendix A. shows the means and the standard deviations of the learning
curves in terms of the RMS error in the end-effector position
] ) ) ) . controlled by CLLU and MLN, respectively. The vertical
We conducted simulations of learning the inverse kineyyas represent the standard deviations. Fig. 3(b) shows the
matics model of a 5-DoF arm (Pioneer 2 Robotic ArM) neans and the standard deviations of the learning curves in
[15] for the overall end-effector position and orientation. Theyems of the RMS error in the end-effector orientation in a
configuration of t?e arm is illustrated in Fig. 2. Let = gimijar manner. Fig. 3(c) shows the means and the standard
(61, 62, ¢3’x’y’Z)T be the end-effector p05|t|on/0r|entaTt|on deviations of the percentage of the trials in which the posture
Vector. (¢1, ¢2, ¢3)" is the Euler angle vectorTar(d:,y,;)_ generated by the first selected expert can successfully react
is the position vector. L& = (01, 02,03,64,05)" be the joint  he gesired position/orientation. Fig. 3(d) shows the means
angle vector. The learning of the inverse kinematics model,q the standard deviations of the number of experts needec

®im () that transformse to 6 was conducted. in CLLU and MLN to model the inverse kinematics.
For comparison, the modular neural network system was It can be seen that the RMS position error and the RMS

also tested unde_r the condition that each_expert was rePlGientation error decrease and the precision of the inverse
sented by a multi-layer neural network trained by the back-

propagation of error. Hereafter, MLN indicates this system,mOdel increases with the number of trials. The RMS position

: T error of CLLU became smaller thah0 x 10~2m at about
whilst CLLU indicates the modular neural network system 4 . . . .
. . : : . 2.0 x 10* learning trials. The RMS orientation error of CLLU
with a collection of linear learning units as experts.

became smaller thah0 x 10~ *rad before4.0 x 10* learning

IV. SIMULATIONS

A. A novel learner

B. Learning the inverse kinematics of a 5-DoF arm
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3. Performance change of proposed inverse kinematics solver

trials. The RMS position error of MLN was still larger than
1.0 x 10~?m and the RMS orientation error of MLN was
still larger than3.0 x 10~ !rad after 1.0 x 10° learning trials.
4.0 x 10* learning trials by CLLU take 52 seconds using the
Intel Xeon 2.0 GHz (512KB cache/FSB400) and Intel C++
Compiler.10° learning trials by CLLU take310 seconds10°
learning trials by MLN takel8, 464 seconds. The learning
speed of the CLLU is much faster than that of MLN.

It should be noted that CLLU requires more memory than
MLN. While MLN requires less tharM B memory, CLLU
requires412M B memory in10° learning trials when all the
real numbers in the programs were stored as 64-bit floating-
point data.

V. CONCLUSIONS

In this paper, we proposed some modifications of the
modular neural network system for learning the inverse
kinematics of robotic arms with fewer degrees of freedom.
We confirmed the performance of the proposed system by
numerical experiments. By the proposed improvement, the
modular neural net system is applicable to general least-
squares problems. Although the proposed architecture still
has a number of limitations, we believe that the architecture
can be the basic model of the practical inverse kinematics
solver with a learning function. We are implementing more
efficient learners, such as locally weighted regression (LWR)
[16], locally weighted projection regression (LWPR) [17],
and the normalized Gaussian network (NGnet) using the on-
line expectation-maximization (EM) algorithm [18]. Although
these learners require more computation, they require much
less memory and relatively fewer training data. The results of
using these learners will be reported in the near future.
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Appendix A Novel Learner Composed of Linear Learning algorithm is useful in each small region.

Units B. Division of the input vector space

A. A linear learning unit . .
9 We use a novel learner that consists of a collection of the

In the small region around a point of the position/orientationabove linear learning units. Let,,;, andx,,.. be the lower
vector space of the end-effector, the continuous part of thand upper limits for the input vectas. .
inverse kinematics functiogf ~*(x) can be approximated as  Let us consider thith unit that has variables such ﬁfsﬁn,
follows: 29, AV and PY). 2Y)  and2$), represent the limits
£ Yz)~ Az + b. of the input region of the unit. The input region of the unit
is an — D hyper-rectangular parallelepiped. When the input
where A is anm x n matrix andb is anm x 1 vector. Let 2 satisfies the following inequalities
us consider the learning ¢f ! (x) aroundz by changingA

andb. We use the Kalman filter algorithm for the learning. xﬁiim < < T'Erjzgzmz(z =1,2,...,n),
im'rrgdjl:rgg:llfy the description, the following variables are the output of the unit is calculated as
X = (2T, 1)7 oY) = A(j)X.
A=(Ab) 6" is used as the output of the whole units as
Let P be the covariance matrix of each row vector Af 0— 00

Pisan(n+1) x (n+1) positive definite symmetric matrix.
Let Q be a scalar parameter describing the rate of the change Let us consider the following updated error of ffté unit.
of each component oA andb. R ) . A G)

Before learning, we do not know the value Af Therefore, ey () =0 -A"(+)X

the initial value of P is set as follows: As the learning proceeds, the norm B9 pecomes small

P0) =PI, 41 and the change cﬁlw becomes small. When the input region



of thej-th unit is too large, the learning based on the Kalman To suppress memory consumption, the minimum size of

filter cannot keep the inequality defined as units is defined. If the scaled length of the side of a unit is
(7) smaller than the minimum size,,;,,, the unit is not divided
leg” (+)| <Teo even if the unit cannot learn a given desired output.

where r.y is an appropriate positive threshold. When the
above inequality breaks down an appropriate number of times
T, thej-th unit is divided. Asr.y decreases, the possibility
of the division of the unit increases and the memory con-
sumption increases.

The conceptual diagram of the calculation of the learner is
illustrated in Fig. A-1.

ADX 0

(a) Previous method (b) Modified method

Fig. A-2 Division of Input Space (2 Dimensional Case)

PW of I-st generated unit is initialized as follows:

PO — op®

where « is an appropriate real number, larger than 1. The

initial value of A" of the I-st generated unit is set a1" .
The generated units are trained instead ofjttre unit.

One drawback of the proposed learner is the disconti-
nuity of the input-output relationship of the learner. How-
ever, the discontinuity is not a problem when a desired
position/orientation vector is given discretely. Furthermore,
a number of interpolation techniques developed for robotic

Fig. A-1 Calculation of the proposed learner control is useful when a desired trajectory of the posi-
tion/orientation vector is given. The other drawback of the
learner is the large memory consumption when the input

In the previous work [14], thg-th unit is divided into

dimension is large. However, the maximum input dimension
of the inverse kinematics problem is 6 or 7 in many cases.

2" hyper-rectangular parallelepipeds. The length of the sidgye pelieve further improvement of the learner can overcome

of the generated units is half that of tfi¢h unit. Thej-th
unit is divided into2 hyper-rectangular parallelepipeds. The
following scaled lengths of the sides of the parallelepiped are
calculated:

ORI
Zmawd | Tmind ;1

Ty = )

Tmazx,i — Tmin,i
The axis corresponding to the maximum scaled length is
selected for the division. The length of the selected side of
the generated units is half that of theh unit. The length of
the other side of the generated units is the same as that of
the j-th unit.

Fig. A-2 shows two examples of the divided input space
when the input dimensiom is 2. Fig. A-2(a) shows an
example of the divided input space by the previous division
method [14] and Fig. A-2(b) shows that by the method used in
this paper. The modification of the division method can reduce
the memory consumption. However, the number of divisions
must be greater than that of the previous method to realize the
same precision. The parameters concerning the divisiBns,
re9, andT,y should be selected carefully. It should be noted
that the division method is still under development.

these drawbacks.



