
Inverse Kinematics Learning for Robotic Arms with Fewer
Degrees of Freedom by Modular Neural Network Systems

Eimei Oyama
National Institute of Advanced

Industrial Science and Technology (AIST)
1-2-1 Namiki, Tsukuba Science City

Ibaraki 305-8564 Japan
Email: eimei.oyama@aist.go.jp

Taro Maeda
Human and Information Science Laboratory
NTT Communication Science Laboratories

3-1 Morinosato Wakamiya, Atsugi-shi,
Kanagawa 243-0198 Japan

John Q. Gan and Eric M. Rosales
Department of Computer Science

University of Essex
Colchester CO4 3SQ, UK

Karl F. MacDorman
Department of Adaptive Machine Systems

Osaka University
1-1 Yamadaoka Suita
Osaka 565-0871 Japan

Susumu Tachi
School of Engineering

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku

Tokyo 113-8656 Japan

Arvin Agah
Department of Electrical

Engineering and Computer Science
The University of Kansas
Lawrence, KS 66045 USA

Abstract— Inverse kinematics computation using an artificial
neural network that learns the inverse kinematics of a robot arm
has been employed by many researchers. However, the inverse
kinematics system of typical robot arms with joint limits is a
multi-valued and discontinuous function. Since it is difficult for
a well-known multi-layer neural network to approximate this
kind of function, a correct inverse kinematics model cannot be
obtained by using a single neural network. To overcome the
difficulties of inverse kinematics learning, we proposed a novel
modular neural network system that consists of a number of
experts, with each expert approximating a continuous part of
the inverse kinematics function. The proposed system selects
one appropriate expert whose output minimizes the expected
position/orientation error of the end-effector of the arm. The
system can learn a precise inverse kinematics model of a robotic
arm with equal or more degrees of freedom than that of its end-
effector. However, there are robotic arms with fewer degrees of
freedom. The system cannot learn a precise inverse kinematics
model of this kind of arm. To overcome this, we adopted a
modified Gauss-Newton method for finding the least-squares
solution. Through the modifications presented in this paper, the
improved modular neural network system can obtain a precise
inverse kinematics model of a general robotic arm.

Index Terms— Learning control systems, Manipulator kine-
matics, Neural networks, Gauss-Newton method

I. I NTRODUCTION

People who work efficiently in complex, unstructured
environments acquire their skills through various kinds of
learning. It may be necessary to implement similar abilities
in robots to enable them to work in the same kinds of
environments [1][2].

The task of calculating all of the joint angles that would
result in a specific position/orientation of an end-effector of a
robot arm is called the inverse kinematics problem. An inverse
kinematics solver using an artificial neural network that learns
the inverse kinematics system of a robot arm has been used
in much research [3][4]; however, many researchers did not
pay enough attention to the fact that the inverse kinematics

function of a typical robot arm with joint limits is a multi-
valued, discontinuous function. Although given enough hid-
den units multi-layer neural networks are in theory universal
approximators, it is difficult to train them to approximate
these kinds of discontinuous functions with currently popular
algorithms.

Jacobs et al. [5][6] proposed a modular neural network
architecture that has been used by many researchers. How-
ever, the typical input-output mapping of their networks is
described as a single-valued function. Their learning methods
would not be suitable for the inverse kinematics learning of
a general robotic arm.

The inverse kinematics function can be decomposed into
a finite number of inverse kinematics solution branches.
DeMers et al. proposed an inverse kinematics learning method
in which a neural network learns each solution branch [7][8].
However, the method is purely off-line and is not applicable
for on-line learning, that is, the simultaneous or alternate ex-
ecution of robot control and inverse model learning. Further-
more, the method is not goal-directed. There is no direct way
to train the learner to output a joint angle vector corresponding
to a given desired end-effector position/orientation.

We proposed a novel modular neural network architecture
for inverse kinematics learning based on DeMers’ method [9]
[10]. The proposed modular neural network system consists
of a number of experts, implemented using artificial neural
networks. Each expert approximates a continuous region of
the inverse kinematics function. The proposed modular neural
network system selects one expert whose output minimizes
the expected position/orientation error of the end-effector of
the arm. The proposed system can learn a precise inverse
kinematics model of a robotic arm with equal or more degrees
of freedom than that of its end-effector.

However, there are robotic arms with fewer degrees of
freedom. The system is not applicable to these robotic arms,

because it uses Resolved Motion Rate Control (RMRC) [11]
to find the inverse kinematics solutions and RMRC is only
applicable for a robotic arm with equal or greater degrees of
freedom than that of its end-effector.

To obtain a precise inverse kinematics model of a robot
with fewer degrees of freedom, some modifications are nec-
essary. We modified the Gauss-Newton method for finding the
joint angle vector trajectory from the initial posture of the arm
to the given desired end-effector position/orientation. By the
modifications proposed in this paper, the improved modular
neural network system can obtain a precise inverse kinematics
model of a general robotic arm. Numerical experiments of
the inverse kinematics learning were performed in order to
evaluate the performance of the improved system.

Expert

Net α

Forward
Model

Expert Selector with Forward Model

+
-

Expert

Net β
Forward
Model

Expert

Net γ
Forward
Model |e|

S

Square of
Error Norm

Predicted Error

-

-

|e|

S

Square of
Error Norm

|e|

S

Square of
Error Norm

+

+

e

|e |
2

xp

xp

xp

im

(γ)

e(β)

(γ)

e(α)

Φ (x)d
(α)

imΦ (x)d
(β)

imΦ (x)d
(γ)

(γ)

(β)

(α)

Robot Arm

Reaching Motion

based on

Resolved Motion Rate Control

d

+

-

x(k)

x (k)

θ (0)

z
-1

θ
θ(k)

e(k)

(i)

θ(k)Reaching

Trajectory

Generatordx

z-1

Random Posture

Generator

dx (k)∆

d

∆

z

x (k+1)d
Initial Posture Generation

+

+

θ (k+1) = θ (k)

+ J ((k)) x' (k)d

+

θ(k+1)

x = f()θ

x = f()θ(i)
x (0)

Extended Feedback Controller

End-effector

Position/Orientation

Error Feedback

Controller

Fig. 1. Inverse kinematics solver with modular neural net system

II. M ODULAR NEURAL NETWORK SYSTEM

We next review the original modular net system for inverse
kinematics learning before presenting its modifications.

Let θ be them× 1 joint angle vector andx be then× 1
position/orientation vector of a robot arm. The relationship
between θ and x is described byx = f(θ). f is a
C1 class function. LetJ(θ) be the Jacobian of the robot
arm, defined asJ(θ) = ∂f(θ)/∂θ. When a desired end-
effector position/orientation vectorxd is given, an inverse
kinematics computation that calculates the joint angle vector
θd satisfying the equationxd = f(θd) is considered. In this
paper, a functiong(x) that satisfiesx = f(g(x)) is called
an inverse kinematics function off(θ). The acquired model
of the inverse kinematics systemg(x) in the robot controller
is called an inverse kinematics model.

Let Φim(x) be the output of the inverse kinematics model.
Although g(x) is usually a multi-valued and discontinu-
ous function, the inverse kinematics function can be con-
structed by the appropriate synthesis of continuous functions
[8][9][10].

A. Configuration of the proposed inverse kinematics solver

Fig. 1 shows the configuration of the improved inverse
kinematics solver with the modular architecture networks for
inverse kinematics learning. Each expert network in Fig. 1
approximates a continuous region of the inverse kinematics
function. The forward models in Fig. 1 approximate the
forward kinematics function of the robot arm. They have
the same input-output relationship. The performance index of
each expert is the predicted end-effector position/orientation
error calculated by using the forward model. The expert
selector chooses one appropriate expert by using the expected
performances of the experts.

The extended feedback controller consists of the reaching
trajectory generator, the end-effector position/orientation error
feedback controller, and the random posture generator as
shown in Fig. 1. The extended feedback controller calculates
inverse kinematics solutions by a kind of iterative improve-
ment method as described in Section II-C. When no precise
solution is obtained by using the output of the selected expert
as the initial value of the calculation, the controller performs
a global search, which is also described in Section II-C. The
proposed modular network system generates a new expert
when no expert can generate an initial value that finally
reaches an inverse kinematics solution for a given desired
end-effector position/orientation.

B. Configuration of the expert

Each expert has its representative posture. Letθ(i)
r be

the representative posture of thei-th expert andx(i)
r be the

end-effector position/orientation that corresponds toθ(i)
r . Let

Φ(i)
im(x) be the output of thei-th expert when the input of

the expert isx. Each expert is trained to satisfy the following
equation:

x(i)
r ≈ f(Φ(i)

im(x(i)
r)). (1)

The above condition can be easily satisfied by changing the
bias parameters of the output layer of the expert. LetΦ′(i)

im (x)
be the desired output for thei-th expert. To maintain the
above condition, the expert is periodically trained by setting
the desired output as follows:

Φ′(i)
im (x(i)

r) = θ(i)
r . (2)

Each expert approximates a continuous region of the inverse
kinematics function in which the reaching motion can move
the end-effector smoothly from its representative posture.

The proposed modular net system uses the predicted posi-
tion/orientation error as the performance index of the expert.
The expert selector chooses the expert with the minimum
predicted error. LetΦfm(θ) be the output of the forward

kinematics model. The predicted error of thei-th expertpi is
calculated as follows:

pi = ||xd −Φfm(Φ(i)
im(xd))||. (3)

C. Extended feedback controller

Conventional on-line inverse model learning methods, such
as forward and inverse modeling proposed by Jordan [4]
and feedback error learning proposed by Kawato [12], are
based on the local information of the forward system near
the output of the inverse model. The desired output signal
provided by these methods is not always in the direction that
finally reaches the correct solution of the inverse problem.
An extended feedback controller avoids that drawback by
employing a global search technique based on the multiple
starts of the iterative method.

When a desired end-effector position/orientationxd is
given, the expert selector chooses the expert with the min-
imum predicted error among all the experts. When the pre-
dicted error of the selected expert is lower than an appropriate
thresholdreim, the extended feedback controller conducts a
reaching motion from the posture corresponding to the output
of the expert toxd by using a newly developed iterative
improvement technique, as described in Section III. When
the predicted error of the selected expert is larger than an
appropriate thresholdreim, the extended feedback controller
conducts a reaching motion from the representative posture
of the selected expert.

When the controller cannot find a precise solution because
of the singularity of the Jacobian or the joint limits, the
reaching motion is regarded as a failure and the reaching
motions from the following three kinds of initial postures are
conducted until a precise solution is obtained.

(1) The posture corresponding to the output of the other
expert with the predicted error smaller thanreim

(2) The representative postures of the randomly selected
experts

(3) Randomly generated postures
When a precise solution is obtained from a randomly gen-
erated posture, a new expert is generated and the solution is
used as the representative postureθr of the expert. If a precise
solution is obtained in the above steps, the solution is used
as the desired output signal for the expert.

III. U PDATED REACHING MOTION CONTROL

A. Reaching motion for equal or more degrees of freedom

Before presenting the updated method, the previous method
is presented.

Let θ(0) be the initial posture of the iterative method,
which is the output of the selected expertΦ(i)(xd); the repre-
sentative posture of the selected expertθ(i)

r ; or the randomly
generated posture. The extended feedback controller conducts
a reaching motion fromxs = f(θ(0)) to xd.

We assume that a precise end-effector position/orientation
feedback controller is already obtained by numerical differen-
tiation techniques or by learning [13]. We used a resolved mo-
tion rate control (RMRC) [11] to realize the reaching motion.

The desired trajectory of the end-effector position/orientation
is on a straight line which connectsxs to xd. The previous
reaching motion is conducted as the tracking control to the
following desired trajectory of the end-effectorxd(k)(k =
0, 1, . . . , T + 1) described as follows:

Let T be an integer that satisfiesT−1 ≤ ||xd − xs||/rst <
T , whererst represents step size. The desired trajectoryxd(k)
is a straight line fromxs = f(θ(0)) to xd which is calculated
as follows:

xd(k) =
{

(1− k
T)xs + k

T xd (0 ≤ k < T)
xd (k ≥ T).

(4)

When the orientation is represented by the direction cosine
matrix or the quaternion, the components ofxd(k) must be
normalized.

Let J+(θ) be the pseudo-inverse matrix (Moore-Penrose
generalized inverse matrix) ofJ(θ), which is calculated as

J+(θ) = JT (θ)(J(θ)JT (θ))−1. (5)

J+(θ) is used as the coordinate transformation gain of the
output error feedback.

Let θ(k) be an approximate inverse kinematics solution at
stepk and∆θ(k) be the change ofθ(k). The trajectory of
the joint angle vectorθ(k) is calculated as follows:

θ(k + 1) = θ(k) + ∆θ(k) (6)

∆θ(k) = J+(θ(k))(xd(k + 1)− f(θ(k))). (7)

Whenn is smaller than or equal tom andrst is small enough
for the non-linearity of the forward kinematics functionf(θ),
θ(k + 1) can satisfy the following equation:

xd(k + 1) ≈ f(θ(k + 1)). (8)

If a precise solutionθ(k), from which end-effector posi-
tion/orientation error norm||xd(k)− f(θ(k))|| is lower than
an appropriate thresholdre, is obtained, the solution is used
for training the selected expert as follows:

Φ′(i)
im (xd(k)) = θ(k). (9)

B. Updated reaching motion

J+(θ) defined in Equation (5) cannot be calculated when
n is greater thanm. Usually, an arm with fewer degrees
of freedom cannot realize a given desired trajectory of the
end-effector position/orientation. The reaching motion is not
achieved by tracking a straight line fromxs = f(θ(0)) to
xd as in Section III-A. A slight but important modification
of the reaching motion is necessary.

Let J∗(θ) be the generalized inverse matrix for finding a
least-squares solution, which is calculated as follows:

J∗(θ) = (JT (θ)J(θ))−1JT (θ). (10)

The real calculation is conducted by using Singular Value
Decomposition (SVD) ofJ(θ). By usingJ∗(θ), the update
vector of the Gauss-Newton method is calculated as follows:

∆θG(k) = J∗(θ(k))(θ(k))(xd − f(θ(k))). (11)

The above∆θG(k) is sometimes too large for controlling
the robotic arm. Letrθst be the step size parameter to keep
||∆θ(k)|| small enough.∆θ(k) is calculated as follows:

∆θ(k) ={
∆θG(k) (||∆θG(k)|| < rθst)

rθst

||∆θG(k)||∆θG(k) (||∆θG(k)|| ≥ rθst). (12)

θ(k) is a unique inverse kinematics solution forx(k) =
f(θ(k)) in most cases. Instead of Equation (9), the learning
of the selected expert learning is conducted as follows:

Φ′(i)
im (x(k)) = θ(k). (13)

Let rθmin be an appropriate positive number defining the
minimum size of∆θ(k). The reaching motion is regarded
as successfully finished when the following inequalities are
established:

||xd − f(θ(k))|| < re (14)

||∆θ(k)|| < rθmin (15)

IV. SIMULATIONS

The modular neural network systems selected the expert
with minimum error by using the complete forward kinemat-
ics modelf(θ). We performed simulations of learning the
inverse kinematics model of a five degree-of-freedom (DoF)
arm, and for simplicity tested the modular neural network
systems in these simulations.

A. A novel learner

Such learning algorithms as the backpropagation of error
that are typically applied to multi-layer neural networks are
not fast. To accelerate the learning speed, we adopted a novel
learner as the expert of the proposed modular network system
and a novel learning method based on the Kalman filter [14].
The learner is an ensemble of linear neural networks. We call
the learnercollection of linear learning units(CLLU). The
learner is described in Appendix A.

B. Learning the inverse kinematics of a 5-DoF arm

We conducted simulations of learning the inverse kine-
matics model of a 5-DoF arm (Pioneer 2 Robotic Arm)
[15] for the overall end-effector position and orientation. The
configuration of the arm is illustrated in Fig. 2. Letx =
(φ1, φ2, φ3, x, y, z)T be the end-effector position/orientation
vector.(φ1, φ2, φ3)T is the Euler angle vector and(x, y, z)T

is the position vector. Letθ = (θ1, θ2, θ3, θ4, θ5)T be the joint
angle vector. The learning of the inverse kinematics model
Φim(x) that transformsx to θ was conducted.

For comparison, the modular neural network system was
also tested under the condition that each expert was repre-
sented by a multi-layer neural network trained by the back-
propagation of error. Hereafter, MLN indicates this system,
whilst CLLU indicates the modular neural network system
with a collection of linear learning units as experts.

Fig. 2. Configuration of Power 2 Robotic Arm

In the simulations, joint angle vectors were generated by
using a uniform random number generator, and the end-
effector positions that correspond to the generated vectors
were used as the desired end-effector positions/orientation
xd. To evaluate the performance of the proposed neural net
system, 3,200,000 desired end-effector positions/orientations
were generated for the estimation of the root mean square
(RMS) error of the end-effector position and orientation.reim

was set at0.33 m, re was set at0.002 m andrst was set at
0.05 rad.

The parameters concerning CLLU are defined in Appendix
A and set as follows:P0 was set at104. Q andR were set at
0.1 and0.01, respectively.reθ was set at0.0001. Teθ was set
at 1. α was set at 2.rmin was set at1/26. By changing the
above parameters, especially,R, reθ and Teθ, the precision
of the learned inverse kinematics model and the memory
consumption can be changed.

A 4-layered neural network was used for MLN. The first
layer (input layer) and the fourth layer (output layer) of the
experts consisted of linear neurons. The second and the third
layers each consisted of 30 nonlinear neurons. The back-
propagation method was used for training. The learning rate
for the experts was set at0.005. The momentum parameter
was set at0.5.

Ten sets of 1,000,000 learning trials for the inverse kine-
matics learning by MLN and CLLU were conducted. Fig. 3(a)
shows the means and the standard deviations of the learning
curves in terms of the RMS error in the end-effector position
controlled by CLLU and MLN, respectively. The vertical
bars represent the standard deviations. Fig. 3(b) shows the
means and the standard deviations of the learning curves in
terms of the RMS error in the end-effector orientation in a
similar manner. Fig. 3(c) shows the means and the standard
deviations of the percentage of the trials in which the posture
generated by the first selected expert can successfully reach
the desired position/orientation. Fig. 3(d) shows the means
and the standard deviations of the number of experts needed
in CLLU and MLN to model the inverse kinematics.

It can be seen that the RMS position error and the RMS
orientation error decrease and the precision of the inverse
model increases with the number of trials. The RMS position
error of CLLU became smaller than1.0 × 10−2m at about
2.0×104 learning trials. The RMS orientation error of CLLU
became smaller than1.0×10−1rad before4.0×104 learning

0.001

0.01

0.1

1

1 100 10000 1000000

Number of Learning Trials

R
M
S

P
o
s
i
t
i
o
n

E
r
r
o
r

(
m
)

CLLU

MLN

(a) RMS position error

0.01

0.1

1

10

1 100 10000 1000000

Number of Learning TrialsR
M
S

O
r
i
e
n
t
a
t
i
o
n

E
r
r
o
r

(
r
a
d
)

ELN

MLN

(b) RMS orientation error

0

20

40

60

80

100

1 100 10000 1000000

Number of Learning Trials

P
e
r
c
e
n
t
a
g
e

o
f

S
u
c
c
e
s
s
f
u
l

S
e
l
e
c
t
i
o
n

(
%
)

CLLU

MLN

(c) Percentage of successful first selection

0

10

20

30

40

1 100 10000 1000000

Number of Learning Trials

N
u
m
b
e
r

o
f

E
x
p
e
r
t
s

CLLU

MLN

(d) Number of experts

Fig. 3. Performance change of proposed inverse kinematics solver

trials. The RMS position error of MLN was still larger than
1.0 × 10−2m and the RMS orientation error of MLN was
still larger than3.0× 10−1rad after1.0× 106 learning trials.
4.0×104 learning trials by CLLU take152 seconds using the
Intel Xeon 2.0 GHz (512KB cache/FSB400) and Intel C++
Compiler.105 learning trials by CLLU take310 seconds.106

learning trials by MLN take18, 464 seconds. The learning
speed of the CLLU is much faster than that of MLN.

It should be noted that CLLU requires more memory than
MLN. While MLN requires less than2MB memory, CLLU
requires412MB memory in106 learning trials when all the
real numbers in the programs were stored as 64-bit floating-
point data.

V. CONCLUSIONS

In this paper, we proposed some modifications of the
modular neural network system for learning the inverse
kinematics of robotic arms with fewer degrees of freedom.
We confirmed the performance of the proposed system by
numerical experiments. By the proposed improvement, the
modular neural net system is applicable to general least-
squares problems. Although the proposed architecture still
has a number of limitations, we believe that the architecture
can be the basic model of the practical inverse kinematics
solver with a learning function. We are implementing more
efficient learners, such as locally weighted regression (LWR)
[16], locally weighted projection regression (LWPR) [17],
and the normalized Gaussian network (NGnet) using the on-
line expectation-maximization (EM) algorithm [18]. Although
these learners require more computation, they require much
less memory and relatively fewer training data. The results of
using these learners will be reported in the near future.

REFERENCES

[1] C. G. Atkeson and S. Schaal, “Learning tasks from a single
demonstration,”Proc. of IEEE International Conference on
Robotics and Automation, vol. 2, pp. 1706-1712, 1997.

[2] S. Schaal, “Is imitation learning the route to humanoid robots?”
Trends in Cognitive Sciences, vol. 3, no. 6, pp. 233-242, 1999.
[why isn’t the title capitalized, as others are?]

[3] M. Kuperstein,“Neural Model of Adaptive Hand-Eye Coordi-
nation for Single Postures,”Science, vol. 239, pp. 1308-1311,
1988.

[4] M. I. Jordan, “Supervised Learning and Systems with Excess
Degrees of Freedom,”COINS Technical Report, 88-27,pp.1-
41,1988.

[5] R. A. Jacobs, M. I. Jordan, S. J. Nowlan and G. E. Hin-
ton,“Adaptive Mixtures of Local Experts,”Neural Computation,
vol. 3, pp. 79-87,1991.

[6] R. A. Jacobs and M. I. Jordan,“Learning Piecewise Control
Strategies in a Modular Neural Network Architecture,”IEEE
Transactions on Systems, Man, and Cybernetics, vol. 23, pp.
337-345, 1993.

[7] D. DeMers and K. Kreutz-Delgado, “Learning Global Direct
Inverse Kinematics,”Advances in Neural Information Processing
Systems 4, pp. 589-594, 1992.

[8] D. DeMers and K. Kreutz-Delgado, “Solving Inverse Kinematics
for Redundant Manipulators,” inNeural Systems for Robotics, O.
Omidvar and P. v. d. Smagt ed., Academic Press, 1997.

[9] E. Oyama and S. Tachi, “Inverse Kinematics Model Learning by
Modular Architecture Neural Networks,”Proc. of International
Joint Conference on Neural Networks ’99, 1999.

[10] E. Oyama and S. Tachi, “Modular Neural Net System for
Inverse Kinematics Learning,”Proc. of International Conference
on Robotics and Automation 2000, pp. 3239-3246, 2000.

[11] D. E. Whitney, “Resolved Motion Rate Control of Manipulators
and Human Prostheses,”IEEE Trans. on Man-Machine System,
vol. 10, no. 2, pp. 47-53, 1969.

[12] M. Kawato, K. Furukawa and R. Suzuki, “A Hierarchical
Neural-network Model for Control and Learning of Voluntary
Movement,”Biological Cybernetics,vol.57, pp.169-185, 1987

[13] E. Oyama, A. Agah, T. Maeda, S. Tachi and K. F. MacDor-
man, “Coordinate Transformation Learning of Human Visual
Feedback Controller based on Disturbance Noise and Feedback
Error Signal,”Proc. of International Conference on Robotics and
Automation 2001, pp. 4186-4193, 2001.

[14] E. Oyama and T. Maeda, “Inverse Kinematics Learning by
Modular Neural Network System which uses Specialized Neural
Networks,” Proc. of International Symposium on Measurement
and Control in Robotics 2003, pp. 275-280, 2003.

[15] J. Q. Gan, E. Oyama, E. Rosales, and H. Hu, “A Complete
Analytical Solution to the Inverse Kinematics of the Pioneer 2
Robotic Arm,” Robotica, will appear.

[16] S. Schaal, C. G. Atkeson and S. Vijayakumar,”Real-Time
Robot Learning with Locally weighted [?] Statistical Learning,”
Proc. of IEEE International Conference on Robotics and Au-
tomation, pp.288-293, 2000.

[17] S. Vijayakumar and S. Schaal, “First and Efficient Incremental
Learning for High-dimensional Movement Systems,”Proc. of
IEEE International Conference on Robotics and Automation, pp.
1894-1899, 2000.

[18] S. Sato and S. Ishii, “On-line EM Algorithm for the Normalized
Gaussian Network,” Neural Computation, vol. 12, no. 2, 2000.

Appendix A Novel Learner Composed of Linear Learning
Units

A. A linear learning unit

In the small region around a point of the position/orientation
vector space of the end-effector, the continuous part of the
inverse kinematics functionf−1(x) can be approximated as
follows:

f−1(x) ≈ Ax + b.

whereA is anm × n matrix andb is anm × 1 vector. Let
us consider the learning off−1(x) aroundx by changingA
andb. We use the Kalman filter algorithm for the learning.

To simplify the description, the following variables are
introduced:

X = (xT , 1)T

Â = (A, b).

Let P be the covariance matrix of each row vector ofÂ.
P is an(n+1)× (n+1) positive definite symmetric matrix.
Let Q be a scalar parameter describing the rate of the change
of each component ofA andb.

Before learning, we do not know the value ofÂ. Therefore,
the initial value ofP is set as follows:

P (0) = P0In+1

whereP0 is a very large positive real number andIn+1 is a
n + 1× n + 1 identity matrix.

Periodically,P is updated as follows:

P (+) = P (−) + QIn+1

whereP (−) is the value ofP before the update andP (+)
is the value ofP after the update.

Let θ′ = f−1(x) be the desired output for the learner
andR be a scalar parameter describing the covariance of the
following error vector defined as:

eθ = θ′ − ÂX.

Since we assume thatθ′ contains no noise,R mainly corre-
sponds to the non-linearity off−1(x).

When x and θ′ = f−1(x) is given, Â can be updated
effectively by using the Kalman filter algorithm. The Kalman
gain is calculated as follows:

K =
P (−)X

(XT P (−)X + R)
.

Let Â(−) be the value of̂A before learning and̂A(+) be the
value ofÂ after learning.Â andP are updated as follows:

Â(+) = Â(−) + KeT
θ

P (+) = P (−)−KXT P (−).

After n + 1 updates ofÂ and P , Â converges to a
relatively precise value. If the position/orientation vector
space is divided into a set of small regions, the above learning
algorithm is useful in each small region.

B. Division of the input vector space

We use a novel learner that consists of a collection of the
above linear learning units. Letxmin andxmax be the lower
and upper limits for the input vectorx.

Let us consider thej-th unit that has variables such asx
(j)
min,

x
(j)
max, Â

(j)
and P (j). x

(j)
min and x

(j)
max represent the limits

of the input region of the unit. The input region of the unit
is a n−D hyper-rectangular parallelepiped. When the input
x satisfies the following inequalities

x
(j)
min,i ≤ xi ≤ x

(j)
max,i(i = 1, 2, . . . , n),

the output of the unit is calculated as

θ(j) = Â
(j)

X.

θ(j) is used as the output of the whole units as

θ = θ(j).

Let us consider the following updated error of thej-th unit.

e
(j)
θ (+) = θ′ − Â

(j)
(+)X

As the learning proceeds, the norm ofP (j) becomes small

and the change of̂A
(j)

becomes small. When the input region

of the j-th unit is too large, the learning based on the Kalman
filter cannot keep the inequality defined as

|e(j)
θ (+)| < reθ

where reθ is an appropriate positive threshold. When the
above inequality breaks down an appropriate number of times
Teθ, the j-th unit is divided. Asreθ decreases, the possibility
of the division of the unit increases and the memory con-
sumption increases.

The conceptual diagram of the calculation of the learner is
illustrated in Fig. A-1.

θA(j)X=(x1,x2,1)T

x1

x2

Fig. A-1 Calculation of the proposed learner

In the previous work [14], thej-th unit is divided into
2n hyper-rectangular parallelepipeds. The length of the side
of the generated units is half that of thej-th unit. The j-th
unit is divided into2 hyper-rectangular parallelepipeds. The
following scaled lengths of the sides of the parallelepiped are
calculated:

ri =
x

(j)
max,i − x

(j)
min,i

xmax,i − xmin,i
(i = 1, ..., n)

The axis corresponding to the maximum scaled length is
selected for the division. The length of the selected side of
the generated units is half that of thej-th unit. The length of
the other side of the generated units is the same as that of
the j-th unit.

Fig. A-2 shows two examples of the divided input space
when the input dimensionn is 2. Fig. A-2(a) shows an
example of the divided input space by the previous division
method [14] and Fig. A-2(b) shows that by the method used in
this paper. The modification of the division method can reduce
the memory consumption. However, the number of divisions
must be greater than that of the previous method to realize the
same precision. The parameters concerning the divisions,R,
reθ, andTeθ should be selected carefully. It should be noted
that the division method is still under development.

To suppress memory consumption, the minimum size of
units is defined. If the scaled length of the side of a unit is
smaller than the minimum sizermin, the unit is not divided
even if the unit cannot learn a given desired output.

(a) Previous method (b) Modified method
Fig. A-2 Division of Input Space (2 Dimensional Case)

P (l) of l-st generated unit is initialized as follows:

P (l) = αP (j)

where α is an appropriate real number, larger than 1. The

initial value of Â
(l)

of the l-st generated unit is set at̂A
(j)

.
The generated units are trained instead of thej-th unit.

One drawback of the proposed learner is the disconti-
nuity of the input-output relationship of the learner. How-
ever, the discontinuity is not a problem when a desired
position/orientation vector is given discretely. Furthermore,
a number of interpolation techniques developed for robotic
control is useful when a desired trajectory of the posi-
tion/orientation vector is given. The other drawback of the
learner is the large memory consumption when the input
dimension is large. However, the maximum input dimension
of the inverse kinematics problem is 6 or 7 in many cases.
We believe further improvement of the learner can overcome
these drawbacks.

