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Abstract—Deep learning-based super-resolution models often
struggle to balance capturing long-range dependencies with
computational efficiency, as convolutional neural networks focus
on local features while transformers incur high computational
costs. To address this trade-off, we propose a parallel lattice
attention network (PLAN) to improve the reconstruction of
complex features. Unlike traditional lattice networks that rely on
sequential cascading, PLAN introduces a parallel lattice attention
block that splits the input feature map into concurrent branches.
These branches employ lattice attention units to simultaneously
extract fine-grained details and global context, which are subse-
quently fused via attention-based integration. This parallel design
maximizes computational efficiency while ensuring robust reuse
of features. Experiments on the AID, UC Merced, and WHU-
RS19 datasets at various scales show PLAN’s superiority in
focusing on critical information to enhance image quality. On
the UC Merced dataset with a 2x scaling factor, PLAN achieves
a PSNR of 32.12 dB and an SSIM of 0.8807, outperforming state-
of-the-art methods such as ESTNet and BMFENet by at least 0.07
dB in PSNR and 0.0210 in SSIM. On the WHU-RS19 dataset
with a 4x scaling factor, PLAN achieves a PSNR of 29.16 dB and
an SSIM of 0.7597, surpassing previous methods by up to 0.64
dB in PSNR. PLAN also maintains computational efficiency with
a runtime of 30.97 ms, faster performance than ESRT (106.34
ms), SwinlR (98.47 ms), FENet (63.52 ms), OmniSR (45.02 ms),
BMFENet (51.43 ms), MSCT (57.15 ms), and ESTNet (67.95
ms).

Index Terms—Attention, lattice network, remote-sensing im-
agery, super-resolution (SR).

I. INTRODUCTION

N computer vision, super-resolution (SR) recovers high-
resolution (HR) images from their lower-resolution (LR)
counterparts. This technology is essential in remote sensing
[1]], where precise visual details support environmental moni-
toring, urban planning, and disaster management applications.
Increased image resolution provides finer details and richer
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information, leading to more accurate analysis and reliable
insights.

In remote sensing image super-resolution (RSISR), two
common strategies for upsampling are pre-upsampling and
post-upsampling. Pre-upsampling uses traditional interpolation
methods, such as bicubic or bilinear, to enlarge the low-
resolution image to match the desired high-resolution output
before feeding it into the network. This approach simplifies
network design, as the input is already at the target resolution;
however, it can introduce artifacts and blur that the network
must correct. Post-upsampling processes the LR image at
its original resolution through convolutional layers to extract
features and then upsamples it to HR in the final step using
learned layers like transposed convolution or PixelShuffle [2].
This method can yield higher-quality images by integrating
upsampling into the network. Both strategies highlight the
need for advancements in capturing long-range dependencies
and global context to improve RSISR performance. Therefore,
we adopted a post-upsampling strategy, as it typically offers
a better balance of reconstruction accuracy and memory effi-
ciency.

Convolutional neural networks (CNNs) have been instru-
mental in advancing RSISR, enabling the extraction of richer
details from remote sensing data. Early models, such as
SRCNN [3]] and FSRCNN [4]], demonstrated the potential
of deep learning for image enhancement. The EDSR [5]]
model introduced deeper architectures and residual connec-
tions, achieving superior results. Other CNN-based models,
such as VDSR [6], LapSRN [7], RDN [8], OmniSR [9]], and
FENet [10], have made notable contributions, each bringing
unique architectural innovations that enhance image quality
in remote sensing applications. However, these models still
struggle with capturing long-range dependencies and global
context due to their inherent locality.

Beyond traditional CNN approaches, other methods have
emerged to address RSISR challenges. Lightweight convolu-
tional structures like CTN [[11] reduce network parameters and
operations while maintaining high performance. HSENet [[12]]
leverages similar ground targets within remote sensing images
to enhance feature representation. Two-stage networks like
TSFNet [[13] integrate spatial and frequency features for step-
by-step super-resolution refinement. The CSA-FE [14]] method
effectively extracts features using channel and spatial attention
mechanisms.

In recent years, transformer models [15] have demon-
strated considerable potential for capturing global contextual
information and long-range dependencies. Models like ESRT
[16], TransENet [[17], SwinIR [18]], and MAT [19] demon-
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Fig. 1. (a) Overall architecture of PLAN. The model consists of a parallel lattice attention block (PLAB) applied after the residual groups (RGs) to aggregate
multi-branch features and enhance global-local interactions. The attention module (AM) further enhances salient regions before reconstruction. (b) The residual

block (RB) used in a residual group.
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Fig. 2.

strate marked improvements through self-attention mecha-
nisms. These models enhance feature extraction and recon-
struction but are computationally demanding, requiring sub-
stantial memory and complex training, especially for high-
resolution images. EHC-DMSR and EDiffSR in-
troduce techniques like diffusion models and Fourier high-
frequency spatial constraints for precise analysis and interpre-
tation across various applications.

Despite advancements, limitations persist. CNNs excel at
capturing local features but often fail to model global context
effectively, limiting their ability to reconstruct fine details in
complex images. Though effective in capturing global infor-
mation, transformers can be prone to overfitting when trained
on limited datasets due to their high model capacity. Although
various attention mechanisms have been proposed to alleviate
these issues, they often still focus primarily on either local or
global feature interactions rather than jointly enhancing both.
These limitations motivate the development of a more efficient
attention strategy that can leverage complementary local and
global cues while maintaining computational efficiency.

We introduce the parallel lattice attention network (PLAN)

(a) Lattice attention unit. Illustration of two basic components of LAUnit, including (b) CONV Block and (c) Attconv.

to resolve these limitations of CNNs and transformers in
RSISR (Fig. [T). PLAN integrates mechanisms to improve
feature extraction and detail preservation while maintaining
computational efficiency. PLAN employs a lattice to route
information between parallel branches. This architecture com-
prises a lattice attention unit for advanced feature extraction, a
parallel lattice attention block (PLAB) for capturing different
levels of refined details, and an attention module (AM) for
enhancing the essential parts of remote sensing images, lever-
aging the strengths of CNNs and transformers (Figs. 2H4).

Our model’s contributions are listed below:

o The lattice attention unit (LAUnit) accumulates informa-
tion from different parts of the remote sensing image,
captures complex dependencies, and efficiently focuses
on important features throughout its processing stages by
reusing rich features.

o The parallel lattice attention block configuration enables
our model to focus on fine-grained details and their
broader context by processing the input feature maps
in parallel branches before merging them via a learned
fusion layer. The results are then fused with the attention
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Fig. 4. Architecture of the attention module.

module, which captures essential global context informa-
tion from remote-sensing images.

o Optimized for remote sensing benchmarks such as the
AID, UC Merced, and WHU-RS19 datasets, our model
employs parallel lattice attention blocks and residual
groups to enhance feature extraction and stability. This
design balances accuracy with runtime efficiency, outper-
forming comparable approaches.

The remaining sections are organized as follows. Section
IT presents existing research on the RSISR field. Section III
discusses the methodology employed for our proposed model.
Section IV introduces the datasets, provides a quantitative
and qualitative analysis of the data, interprets the results,
and presents an ablation study. Finally, Section V gives the
conclusion.

II. RELATED WORK

A. CNN-Based Super-Resolution Architectures

Pioneering CNN research has addressed super-resolution
through a range of structural innovations. Li et al. [22]]
developed a recursive fractal network to accelerate execution
via recursive mechanisms, while Zhang et al. [23[] introduced
an unfolding model specifically for denoising and deblurring.
To capture higher-level features for detail refinement, Li et
al. [24] proposed a feedback structure. Additionally, several
methods [25]], [26] employ multiscale residual techniques to
integrate information across local and global levels. However,
complex variations in texture and illumination often still hinder
performance in these architectures.

Lattice networks address these limitations by using grid-
like topologies that enable nodes to interact over longer dis-
tances, thereby refining image details and achieving superior
performance in computer vision tasks [27]-[29]. For instance,
Luo et al. [30] reuse aggregated information from intermediate
layers for image restoration, while Hao et al. [31] employ
lattice-gated units to refine fine-grained details via channel
interaction.

However, unlike standard lattice networks [27]], [28]] that
typically employ recursive feedback filters or sparse quantiza-
tion for 3D data, PLAN introduces parallel lattice attention
blocks. Instead of recursive sequencing, these blocks split
input features into concurrent branches that are processed by
dual lattice attention units. This design simultaneously extracts
fine-grained details and broader contextual structures, integrat-
ing them via attention-based fusion. By replacing sequential
processing with this parallel approach, PLAN maximizes GPU
parallelism and structural efficiency.

B. Hybrid Approaches for RSISR

Combining CNN and transformer modules has enhanced
super-resolution models [32]-[36]], leading to improved recon-
struction accuracy. For instance, Wang et al. [37] proposed a
network utilizing global context information embedded across
different scales. Qin et al. [38]] integrated channel and spatial
attention blocks into a Swin transformer to refine the feature
representation, while Tang et al. [39] used a pyramid split
attention mechanism alongside enhanced spatial attention to
improve extraction capabilities. Similarly, Xudong et al. [40]
developed a hybrid model fusing multiscale CNN features with



a transformer block to explore multiscale global information.
Distinct from these approaches, our model uniquely integrates
an attention unit within a parallel lattice structure alongside a
self-attention mechanism, effectively capturing both local and
global dependencies with greater structural efficiency.

C. Attention Mechanisms for RSISR

Attention mechanisms have been widely incorporated into
RSISR models to enhance feature representation and recon-
struction quality. Recent studies [41], [42] employ hybrid
models that combine channel and spatial attention to better
capture both global context and local details. Similarly, self-
attention modules have been applied to adaptively explore
global structure while preserving fine local details in hierar-
chical feature spaces [43[]-[45]].

More recently, transformer-based architectures like ACT-SR
[44], SCAT [45], and CSCT [42] have introduced aggregation
connections, shifted channel attention, and channel-spatial
coherence to enhance global modeling. While these methods
achieve state-of-the-art fidelity, they entail high computational
costs. Other approaches, such as dual attention enhancement
networks [46], focus on efficiency by refining features via
contrast-aware channel attention and forward fusion strategies.
However, many of these mechanisms still emphasize either
local or global features in isolation or rely on separate modules
that lack joint optimization. These limitations underscore the
need for integrated designs like PLAN. By adopting a parallel
lattice framework to simultaneously capture complementary
local and global cues, PLAN achieves competitive perfor-
mance with a significantly lower runtime (30.97 ms), making it
highly suitable for resource-constrained on-board processing.

III. PROPOSED METHOD

This section introduces the parallel lattice attention network
for RSISR. Section III-A presents the overall network frame-
work; Section III-B introduces the lattice attention unit; Sec-
tion III-C details the parallel lattice attention block structure;
and Section III-D explains the attention module and image
reconstruction process.

A. Network Architecture

As illustrated in Fig.[I] PLAN comprises four primary com-
ponents: initial detail extraction, the parallel lattice attention
block, the attention module, and final reconstruction. Let Ij g
and Isg denote the input low-resolution image and the output
super-resolved image, respectively. First, a convolutional layer
extracts shallow features from IR, yielding the initial feature
map Fp:

Fy = Ho(Iir) (1)

where H. denotes the initial feature extraction layer consisting
of a 3 x 3 convolution.

Fyp is then processed by residual groups (RG) to learn deep
feature representations. These groups use skip connections to
mitigate the vanishing gradient problem. Each RG comprises
residual blocks (RBs), each consisting of convolutional layers
with a 3 x 3 kernel, followed by batch normalization and ReLU

activations. Residual connections maintain network stability by
adding the original input to the layer’s output, preserving fine
details and facilitating effective information flow.

Frpg = Fin + BHepn(Fin) 2

where Hcgn represents the residual block transformation (two
convolutional layers with batch normalization), 3 is the scaling
parameter, and Fj, denotes the input to the block. Although
some recent SR architectures remove batch normalization to
conserve memory [5]], [18]], the residual groups retain it to
stabilize the training of deep features before they enter the
parallel lattice attention block.

Next, the features are processed by the parallel lattice
attention block, which enhances and refines representations
using specialized structural units. These blocks collaborate to
produce a more detailed and refined feature map Fppap:

Fre, = Hra,, (Fro(k-1)) »
FpLag = Hp(Fra,) 4)

where H,, denotes the PLAB operation, and Fgg,, is the output
of the final residual group.

Fprap is fed to the attention module to emphasize salient
elements and capture long-range dependencies. This module
incorporates a self-attention mechanism defined as

k=1,....n 3)

F, = 7y - softmax(Q; K )Vi( FpLag) (5)

where 7y is a learnable scaling parameter for stabilization, and
Q;, K;, and V; represent the query, key, and value projections,
respectively.

The refined attention features F, are added back to the
initial detail features F{y to preserve global context. The
fused features are then processed by the upsampling module
(PixelShuffle), which rearranges elements to increase spatial
resolution. Finally, a convolutional layer reconstructs the high-
resolution output image Isg:

ISR - Hrec(fp(Fa + FO)) (6)

where f, denotes the pixel-shuffle upsampling operation, and
H,. represents the final reconstruction convolution.

Algorithm 1 SISR reconstruction of remote sensing images
Require: Low-resolution remote sensing image Iy g
Ensure: High-resolution remote sensing image Isg

1: Extract shallow features Fjy from I;r using the initial
convolution layer (Eq. 1).

2: Process F{y through residual groups to learn deep feature
representations Frg, (Eq. 2-3).

3: Process FRrg, through the parallel lattice attention block
to refine high-frequency details (textures, edges) and gen-
erate [pap (Eq. 4).

4: Apply the attention mechanism to Fppap to capture global
context and long-range dependencies, yielding F7, (Eq. 5).

5: Reconstruct the high-resolution output Isg by fusing F,
with Fp and applying pixel-shuffle upsampling (Eq. 6).

6: Return Isg




Algorithm [T] provides the pseudocode of the PLAN network
for the reconstruction of high-resolution remote sensing im-
ages. Our approach reuses features with contextual information
to capture complex relationships within image data, preserving
and enhancing fine details.

B. Lattice Attention Unit

The lattice attention unit (LAUnit) in PLAN enhances and
refines features from input images, a step crucial for high-
quality output. The LAUnit enables cross-channel interaction
by reusing rich features that contain high-frequency details,
such as textures and edges. This module integrates two com-
ponents: the CONV Block and Attconv. The CONV Block
consists of residually connected pairs of 3 x 3 convolutional
layers followed by LeakyReLU nonlinear activation functions.
The Attconv component processes an input feature map x. of
size H; x W; via adaptive average pooling, calculated as

1 H; W;
Y. = m Z Z ze(h,w) (7N
h=1w=1
where H; and W; denote the height and width of the fea-
ture map, respectively. The attention convolution operation is
defined as

Attconv(Y.) = ¢(H.(ReLU(H.(Y:)))) 8)

where ¢ denotes the sigmoid activation, ReLLU is the nonlinear
activation function, and H, represents a convolution layer with
a kernel size of 1 x 1.

The LAUnit efficiently extracts features by dividing the
input feature map into two channel groups, which are pro-
cessed in parallel. As shown in Fig. 2] the cross-stream
connections between these branches form a lattice topology,
allowing the network to dynamically modulate information
flow between local and global feature extractors. Each group
is processed individually through a series of CONV Blocks,
followed by an Attconv unit that recombines the channels
to selectively enhance features. This method ensures efficient
feature extraction, a crucial step for high-resolution image
reconstruction. Mathematically, for an input x with channels
split into x; and Xso:

x; = CONV Block(x;) )

where x; comprises half the original channels, and
CONYV Block denotes a sequence of convolution blocks with
LeakyReLU activations.

A = Attconv(x}) (10)
where Attconv is the attention convolution block.
P = concat(xa, A ® x}) (11)

where xo comprises the remaining half of the original chan-
nels, and P denotes information being fused from x» to x;.

B = Attconv(xs) (12)

Q = concat(x1, B ® x3) (13)

where Q denotes information being fused from x; to Xxs.

Yiau = Wout(concat(w,(P), wy(Q))) (14)
where w denotes a convolution operation with a kernel size
of 3 x 3, and Y ay represents the combined features from the
different branches, the final output of the LAUnit.

The cascaded convolution branch prioritizes fine-grained
details, whereas the parallel branch captures broader contex-
tual structures. This dual-path design facilitates the reuse of
both local and global features, enhancing information flow
throughout the network. To validate this complementary effect,
we conducted an ablation study by systematically removing
each branch. As shown in Table [V| eliminating either branch
resulted in a substantial performance degradation, confirming
that both components are essential for optimal reconstruction.

C. Parallel Lattice Attention Block

As illustrated in Fig. 3] the image data is processed to
adaptively merge features from LAUnits, passing through
a parallel lattice attention block (PLAB) to capture both
fine details and broader context. This structure enhances key
channels by selectively integrating crucial information using
convolutional kernels of sizes 3 x 3 and 5 x 5. Furthermore,
the block selectively aggregates salient information to produce
a sharper final image while adaptively reweighting channels.

TABLE I
REMOTE SENSING DATASETS.

Split Dataset Images Classes Resolution
Train/Val./Test  AID [47] 10,000 30 600 x 600
Test UC Merced (48] 2100 21 256 x 256
Test WHU-RS19 [49] 1005 19 600 x 600
—— EDSR
0.35 SwinlR
—— OmnisR
—— FENet
0.30 4 —— BMFENet
— MSCT
» ESTNet
2 025 —— PLAN (Ours)
§ 0.20
S

Epoch

Fig. 5. Validation loss curves comparing the proposed PLAN model with
state-of-the-art methods on the AID dataset over 100 epochs.



TABLE 11
PSNR AND SSIM COMPARISON OF PLAN WITH OTHERS ON AID, UC MERCED, AND WHU-RS19.

Scale Method AID UC Merced WHU-RS19

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 29.23 0.8131 2445 0.7039 24.82 0.7126
EDSR [5]] 33.12 0.8323 30.72 0.7838 31.66 0.8023
SwinlR [[18] 3345 0.8541 3143 0.8046 32.12 0.8274
ESRT [16] 3427 0.8742 3152 0.8131 3245 0.8351

9 OmniSR [9] 3452 0.8951 31.60 0.8367 32.56 0.8467
FENet [10] 3472 0.8962 31.89 0.8389 32.60 0.8483
BMFENet [31] 34.73 0.9021 3194 0.8425 32.66 0.8501
MSCT [40] 3477 09141 32.03 0.8589 32.67 0.8688
ESTNet [43] 3479 09254 32.05 0.8597 32.69 0.8725
PLAN (ours) 34.87 09371 32.12 0.8807 32.71 0.8797
Bicubic 26.34 0.7336 23.15 0.6312 23.66 0.6691
EDSR [5]] 30.66 0.8291 26.44 0.7431 28.60 0.7522
SwinlR [[18] 31.01 0.8302 26.58 0.7530 28.63 0.7772
ESRT [16] 3098 0.8341 26.67 0.7535 28.86 0.7788

3 OmniSR [9] 3141 0.8422 27.06 0.7523 29.38 0.7846
FENet [10] 3146 0.8443 2722 0.7684 29.49 0.7869
BMFENet [31] 31.48 0.8449 27.23 0.76 29.53 0.7925
MSCT [40] 31.50 0.8452 27.24 0.7878 29.59 0.7975
ESTNet [43] 31.52 0.8492 2728 0.7888 29.63 0.7978
PLAN (ours) 31.58 0.8564 27.35 0.7902 29.74 0.7981
Bicubic 2451 0.6621 2274 0.6174 23.83 0.6671
EDSR [5]] 28.65 0.7422 2519 0.6732 2696 0.7219
SwinIR [[18] 29.22 0.7521 2521 0.6750 27.29 0.7245
ESRT [16] 2930 0.7641 2521 0.6760 27.42 0.7332

Ax OmniSR [9] 2947 0.7783 2531 0.6888 28.03 0.7385
FENet [[10] 29.75 0.7792 25.64 0.6941 28.06 0.7450
BMFENet [31] 29.77 0.7795 25.70 0.6989 28.07 0.7467
MSCT [40] 29.85 0.7801 25.73 0.7026 28.10 0.7488
ESTNet [43] 29.88 0.7853 25.76 0.7083 28.52 0.7497
PLAN (ours) 2998 0.7923 26.59 0.7156 29.16 0.7597

A residual connection within the PLAB maintains network
stability. The generation of the reused feature Y is

Y1 = Yiaui(x) (15)
Y2 = Yiava(x) (16)
where LAU; represents successive LAUnit operations.
The top-branch features are calculated as
Yiop = ¢Her[concat{ Pyye (Y1), Pmax (Y1)} © Y1 17

where H.; has a kernel size of 3 x 3; P, and By, denote
average pooling and max pooling, respectively. The bottom-
branch features are derived as

Yinottom = ¢Hc2 [COHC&t{Pan(YQ), Pmax(YQ)H O) Y2 (18)

where H.o has a kernel size of 5 x 5, and ©® denotes element-
wise multiplication. Finally, the enhanced features are fused
via

Yenhanced = Hl x1 [COIlcat(Kopa }/bottom)] +x (19)

where H; .1 denotes a convolution layer with a kernel size of
1x1.

The PLAB architecture ensures the effective capture of com-
plex details at varying levels. We analyzed the contributions of
the top and bottom branches (Table [VI). The results confirm
that integrating both branches is essential for robust feature
enhancement, yielding superior image quality.

D. Attention Module

Following the PLAB, the attention module (AM) empha-
sizes salient regions within the feature maps. This mechanism
captures global context and long-range dependencies, resulting
in coherent and detailed reconstructions.

As illustrated in Fig. ] the module employs a self-attention
mechanism. In our implementation, we employ a multi-head
attention mechanism with 2 heads to capture contextual depen-
dencies. For simplicity, the following formulation describes the
process for a single head.



We compute three projections of the input feature map:
query (Q;), key (K;), and value (V;). These projections are
generated via convolutional layers. The @); and K; projec-
tions generate an attention map that identifies salient spatial
locations. Mathematically, for an input feature map Y cphanceds
the process is defined as

Qi = Hq (Yenhanced) (20)
Ki = Hk (Yenhanced) (21)
V% == Hv (Yenhanced) (22)

where H,, Hy, and H, denote pointwise (1 x 1) convolutional

layers for the query, key, and value projections, respectively.
The attention map A is computed as the softmax of the dot

product between the query (Q; and the transposed key K;:

A = softmax(Q; - KZT) (23)

Subsequently, this attention map weights the value projection
V; to generate the modulated features F,:

Fo=7-A-V; (24)

where + is a learnable scaling parameter that stabilizes the fea-
ture refinement. Finally, the output of the attention module is
fused with the initial feature map F{, via a residual connection:

Fam=Fy+ F, (25)

The fused feature map Fan is subsequently processed by
the reconstruction module, which uses upsampling layers to
increase spatial resolution. This process generates the final
super-resolved output Isg, preserving fine structural details.

We adopt the L£; loss as the optimization objective to
supervise the reconstruction of high-resolution images:

L1 = |Isr — Iur|x (26)

IV. EXPERIMENTS
A. Datasets and Metrics

We trained the PLAN and benchmark models on the AID
dataset [47], which contains 10,000 images in 30 classes,
including beaches and baseball fields, each sized at 600 x 600
pixels. The dataset was divided into training (70%), validation
(20%), and testing (10%) sets.

We evaluated model performance on remote sensing image
super-resolution at multiple scales using three benchmark
datasets: AID, UC Merced [48], and WHU-RS19 [49] (Ta-
ble ). To verify the quality of super-resolved images, we used
peak signal-to-noise ratio (PSNR) [50] and structural similarity
index measurement (SSIM) [51]], focusing on the Y channel
(luminance) in the YCbCr color space for visual perception.

During training on AID, the £; loss on both the training
and validation sets decreased steadily, with no substantial
gap between them, indicating stable optimization and lim-
ited overfitting. Fig. 5] shows the validation loss curves for
all models, indicating convergence after approximately 100
epochs. For each network, the training checkpoint with the
lowest validation loss was selected for testing.

TABLE III
PAIRED TWO-TAILED ¢-TESTS (p-VALUE, COHEN’S d) COMPARING PLAN
AND COMPETING METHODS ON UC MERCED (2X SCALE).

Method t p d

Bicubic 157.32 9.79 x 10~? 6.87
EDSR [5] 28.85 8.70 x 10—6 1.26
SwinIR [18] 19.02  450x107°  0.83
ESRT [16] 23.74 1.87 x 102 1.04
OmniSR [9] 25.31 1.45 x 102 1.10
FENet [10] 6.46 296 x1073  0.28
BMFENet [31] 710  2.10x 1073  0.31
MSCT [40] 6.02 3.84 x 10~3 0.26
ESTNet [43] 785 1.65x1073  0.34

TABLE IV

RUNTIME, PARAMETER COUNT, GFLOPs, PSNR, AND SSIM
COMPARISON ON WHU-RS19 (4X SCALING).

Method Runtime (ms) Params (M) GFLOPs PSNR SSIM

EDSR [5] 21.68 21.84 1427.15 2696  0.7219
SwinIR [[18] 98.47 2.11 129.90 2729 0.7245
ESRT [16] 106.34 3.16 72.62 2742 0.7332
FENet [10] 63.52 0.37 1.45 28.03 0.7385
OmniSR [9] 45.02 0.81 312 28.06 0.7450
BMFENet [31] 51.43 0.48 29.40 28.07 0.7467
MSCT [40] 57.15 1.39 1676 28.10  0.7488
ESTNet [43] 67.95 3.28 89.32 2852  0.7497
PLAN (ours) 30.97 1.20 5297 29.16 0.7597

B. Implementation Settings

We implemented all models using PyTorch [52] on an
NVIDIA GeForce RTX 3080 GPU with FP32 precision.
The PLAN architecture comprises 8 residual groups, each
containing 5 residual blocks, and uses 2 heads in the attention
module.

To ensure a fair comparison, all models were trained for 100
epochs with a batch size of 16 under identical optimization
settings. Network weights were initialized using Kaiming
normal initialization [53]]. Input data consisted of 192 x 192
patches randomly cropped from remote sensing images, aug-
mented via rotation, color jittering, and Gaussian blurring.
We optimized the models using the L1 loss function and the
Adam optimizer with a learning rate of 1074, 5, = 0.9,
Bo = 0.999, and ¢ = 1078 The code is available at
https://github.com/allenptnk/PLAN,

C. Quantitative Results

We evaluated remote-sensing image SR on the AID, UC
Merced, and WHU-RS19 datasets at scales of 2%, 3x, and 4x,
generating low-resolution inputs via bicubic downsampling.
We benchmarked PLAN against bicubic, EDSR [5]], SwinIR
[18]], ESRT [16], OmniSR [9]], FENet [10], BMFENet [31]],
MSCT [40] and ESTNet [43] using PSNR and SSIM (Ta-
ble [l). The quantitative results confirm the model’s superior
retention of rich edges and spatial details. As provided in Ta-
ble [III] statistical tests on the improvements in PSNR confirm
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Fig. 6. PSNR comparison of methods by class on UC Merced (2x scaling).
TABLE V TABLE VII

ABLATION STUDY ON THE LATTICE ATTENTION UNIT ON UC MERCED
(2X SCALING).

ABLATION STUDY OF NETWORK COMPONENTS ON WHU-RS19 (4%
SCALING). AM: ATTENTION MODULE, PLAB: PARALLEL LATTICE
ATTENTION BLOCK, RG: RESIDUAL GROUP.

Variant PSNR (dB) SSIM
w/o Branch P (only Q) 30.78 0.8721
wlo Branch Q (only P) 31.02 0.8759 v X 4 0.96 4555 2422 0.6998
w/o both branches (baseline) 29.10 0.8651 v v X 1.19 53.25 2642  0.7002
X v v 0.87 43.01 2744  0.7230
TABLE VI v v v 1.20 52.97 29.16  0.7597
ABLATION STUDY ON THE PARALLEL LATTICE ATTENTION BLOCK ON
WHU-RS19 (4% SCALING). HERE k DENOTES THE KERNEL SIZE OF THE
CONVOLUTION BLOCK.
TABLE VIII
R IMPACT OF LAUNIT QUANTITY AND KERNEL SIZES ON WHU-RS19 (4%
Variant PSNR SSIM SCALING).
top branch: k£ = 5; bottom branch: kK = 5 27.46 0.7390
top branch: k = 3; bottom branch: k =3  27.86  0.7447 No. of LAUnits Kernel Sizes Parameters GFLOPs PSNR SSIM
top branch: k = 3; bottom branch: kK =5 29.16 0.7597 3 120 M 52.70 27.90 0.7493
without top branch 2635  0.7383 3,5 120 M 5297 29.16  0.7597
without bottom branch 2642 0.7388 3 3,57 121 M 5325 2851 07497

that PLAN performs significantly better than the comparison
methods. Fig. [f] details performance across individual classes.

D. Model Complexity Analysis

We compare our model with several state-of-the-art models
on the WHU-RS19 dataset, focusing on runtime, parameter
count, and GFLOPs. Table shows results on the WHU-
RS19 dataset with a 4x scaling factor. Our model bal-
ances performance and efficiency, achieving superior super-
resolution results with lower complexity and higher PSNR
and SSIM values than other models. FENet and OmniSR
models have fewer parameters and consume fewer GFLOPs
than ours, but our model achieves higher accuracy and faster
runtime. This highlights our model’s ability to deliver high-
quality output with greater computational efficiency.

Although FENet [10] and OmniSR [9]] possess fewer param-
eters and GFLOPs, they exhibit higher inference latency than
PLAN. While high GFLOPs typically correlate with increased
energy consumption, they do not directly dictate inference
speed if the architecture can be effectively parallelized. FENet
relies on sequential feature fusion, while OmniSR employs
cascaded aggregators; both impose sequential dependencies
that hinder GPU throughput. In contrast, PLAN’s parallel
lattice framework processes split feature maps via concurrent
branches within the PLAB. This design maximizes GPU
parallelism and minimizes sequential overhead, yielding faster
runtime despite a higher operation count. Consequently, PLAN
prioritizes low-latency performance, making it advantageous
for time-critical on-board processing where response speed is
paramount.
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TABLE IX E. Ablation Study
PERFORMANCE COMPARISON ON UC MERCED (4X SCALING).
This section presents results from experiments on the WHU-

Method AG 1  NIQE | RS19 dataset to examine the contribution of each component
in our method. To assess the specific contributions of archi-
tectural components, including residual groups, the parallel

Bicubic 0.52 33.24

]SEDSTRS gzi 222421 lattice attention block, and the attention module, we con-
winIR 125] ’ ’ ducted ablation studies on the WHU-RS19 dataset with a x4
ESRT [16] 0.54 32.16

scaling factor. The results indicate that incorporating PLAB

FENet [ 10 0.54 31.52 . . Lo .

Omn?S Iél 0.54 31.99 and residual blocks yields substantial improvements in PSNR
BMFENet [B1 0’ s 3 1' 65 and SSIM, while the AM further enhances reconstruction
MSCT II 0‘ 55 31’ 40 quality, with the full integration of these components achieving
ESTNet 23] 0'55 31'29 the highest performance (Table [VII). We further investigated

29.86 kernel size configurations and found that a hybrid combination

PLAN (ours) 0.56 . R K X
of sizes 3 and 5 is most effective (Table m) Finally, we
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examined the impact of LAUnit quantity and determined that a
configuration of 2 LAUnits offers the optimal balance between
computational efficiency and parameter count (Table |VIII).
The statistical analysis confirms that removing either branch,
using the same kernel size, or more or fewer LAUnits leads to
statistically significant performance degradation, validating the
effectiveness of the proposed parallel lattice attention design.

F. Qualitative Results

We compared our model’s results with those of several state-
of-the-art models, with the findings presented in Figs. [7]and [§]
for a 4x scaling factor. The comparison highlights our model’s
superior performance, particularly in delineating bridge edges
and viaduct markings, demonstrating its structural clarity and
effectiveness in preserving fine details at higher magnification
levels. We validated our model against state-of-the-art models
using color error map analysis, as shown in Figs. [7] and [§]
Visual comparisons, as shown in the rectangular box, indicate
that our model achieves superior results. The proposed method
better preserves fine structural details and produces lower color
reconstruction errors in the highlighted regions compared to
existing SR methods.

The experiments demonstrate that the classical bicubic
method attenuates high-frequency details. While EDSR
improves performance by increasing depth, it underutilizes
low-level features. Similarly, attention-based and lattice frame-
works, including SwinIR [18], FENet [I0], OmniSR [9],
and BMFENet [31]], struggle to capture fine details or suf-
fer from limited receptive fields. Hybrid models, such as
ESRT [16], MSCT [40], and ESTNet [43], combine CNNs
with transformer architectures; however, they lack the inter-
action between low-level and high-level features that is vital

for effective remote-sensing image reconstruction. In contrast,
the proposed PLAN model preserves both fine-grained and
coarse details, providing sharper edges and richer textures than
competing methods.

G. Experiments on Nonsynthetic Dataset

To evaluate the effectiveness of the proposed PLAN model
under real-world conditions, we conducted experiments on
the UC Merced dataset at 4x scaling without applying
simulated degradation. We assessed performance using the
average gradient (AG) and Natural Image Quality Evaluator
(NIQE) [54]. The AG metric employs the Sobel operator
to measure edge sharpness (where higher values are better),
while NIQE uses a multivariate Gaussian model to assess
perceptual quality (where lower values are better). Table [IX]
presents a quantitative comparison with benchmark methods.
To ensure robustness, we conducted paired two-tailed ¢-tests
on per-image AG and NIQE scores, confirming that PLAN’s
improvements are statistically significant. The lower NIQE
scores demonstrate that our method restores perceptual quality
consistent with human vision, while the higher AG scores
highlight its superior ability to reconstruct fine edges and
textures. These findings are visually corroborated in Fig. [0]
where the proposed network resolves clearer lines and textures
in the tennis court scene.

V. CONCLUSION

In this article, we present PLAN, an RSISR network that
achieves superior image quality with efficient computation.
PLAN uses LAUnit to enhance features, extracting features
with rich edges, textures, and contours. After that, parallel



lattice units merge information separately to process complex
features, while an attention mechanism captures significant
context from remote-sensing images. Extensive experiments
validate the effectiveness and robustness of PLAN for high-
resolution remote sensing applications, significantly enhancing
visual quality. Our approach performs well on images of size
600 x 600 pixels; however, real-world remote sensing appli-
cations may require processing significantly larger regions to
avoid boundary artifacts introduced by patch-based processing.
Future work will explore strategies like model optimization to
enhance scalability.
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